题目大意:

项链和手镯都是若干珠子穿成的环形首饰,手镯可以旋转和翻转,但项链只能旋转,给n个珠子,t种颜色,求最后能形成的手镯,项链的数量

这里根据等价类计数的polya定理求解

对于一个置换f,若一种方案经过置换后不改变,那么不改变的点的个数记作C(f)

统计所有的C(f) , 相加之后求和除以置换的种数即可

那么这道题里面

对于项链来说,旋转一个角度,也就是2*PI/n , 那么置换群可表示为

1 2 3 4 .... n

2 3 4 5 ... 1

这里就存在一个循环节

所以方案数为 t^1

自己 写着会发现,循环节的个数就是旋转数和总数的gcd值

那么不动点的个数就是 sigma(t^(gcd(i,n))

对于手镯除了上述情况,还有翻转

对于 n 为奇数,翻转对称轴有n条,这样置换形成的循环节有 (n+1)/2

对于 n 为偶数,翻转对称轴有n条,n/2条是不经过点的,这样置换形成的循环节有 (n)/2

n/2条经过两个点的,这样置换形成的循环节有 (n)/2+1

 #include <cstdio>
#include <cstring> using namespace std;
#define ll unsigned long long
int n , t;
ll pow[]; int gcd(int a , int b){return b==?a:gcd(b , a%b);} void init()
{
pow[] = t;
for(int i= ; i<=n ; i++) pow[i] = pow[i-]*t;
}
int main()
{
// freopen("in.txt" , "r" , stdin);
while(~scanf("%d%d" , &n , &t)){
init();
ll a= , b=;
for(int i= ; i<=n ; i++){
a += pow[gcd(i , n)];
}
if(n&) b+= pow[(n+)/]*n;
else{
b+=(n/)*(pow[n/]+pow[n/+]);
}
printf("%lld %lld\n" , a/n , (a+b)//n);
}
}

UVA 10294 等价类计数的更多相关文章

  1. UVa 10294 (Pólya计数) Arif in Dhaka (First Love Part 2)

    Burnside定理:若一个着色方案s经过置换f后不变,称s为f的不动点,将置换f的不动点的数目记作C(f).等价类的数目等于所有C(f)的平均值. 一个项链,一个手镯,区别在于一个能翻转一个不能,用 ...

  2. UVA 10294 项链与手镯 (置换)

    Burnside引理:对于一个置换\(f\), 若一个着色方案\(s\)经过置换后不变,称\(s\)为\(f\)的不动点.将\(f\)的不动点数目记为\(C(f)\), 则可以证明等价类数目为\(C( ...

  3. 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)

    题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...

  4. 等价类计数:Burnside引理 & Polya定理

    提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ ...

  5. UVa 10601 (Polya计数 等价类计数) Cubes

    用6种颜色去染正方体的12条棱,但是每种颜色都都限制了使用次数. 要确定正方体的每一条棱,可以先选择6个面之一作为顶面,然后剩下的四个面选一个作为前面,共有24种. 所以正方体的置换群共有24个置换. ...

  6. Uva 10294 Arif in Dhaka (First Love Part 2)

    Description 现有一颗含\(N\)个珠子的项链,每个珠子有\(t\)种不同的染色.现求在旋转置换下有多少种本质不同的项链,在旋转和翻转置换下有多少种本质不同的项链.\(N < 51,t ...

  7. UVa 10294 Arif in Dhaka (First Love Part 2)(置换)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35397 [思路] Polya定理. 旋转:循环节为gcd(i,n) ...

  8. Arif in Dhaka (First Love Part 2) UVA - 10294(Polya定理)

    这题和POJ-1286一样 题意: 给出t种颜色的n颗珠子 (每种颜色的珠子个数无限制,但总数必须是n), 求能制作出项链和手镯的个数 注意手镯可以翻转和旋转  而 项练只能旋转 解析: 注意Poly ...

  9. 等价类计数(Polya定理/Burnside引理)学习笔记

    参考:刘汝佳<算法竞赛入门经典训练指南> 感觉是非常远古的东西了,几乎从来没有看到过需要用这个的题,还是学一发以防翻车. 置换:排列的一一映射.置换乘法相当于函数复合.满足结合律,不满足交 ...

随机推荐

  1. Android开发面试经——2.常见Android基础笔试题

     标签: androidAndroid基础Android面试题Android笔试题 2015-03-12 15:04 3361人阅读 评论(3) 收藏 举报  分类: Android开发(29)  版 ...

  2. 转载---jboss简单使用

    初学Jboss,对于Jboss的基础认识以及配置做一些记录 Jboss基础: JBoss是什么–基于J2EE的应用服务器–开放源代码–JBoss核心服务不包括支持servlet/JSP的WEB容器,一 ...

  3. Android布局_相对布局RelativeLayout

    一.RelativeLayout(相对布局)概述 RelativeLayout是相对布局控件,它包含的子控件将以控件之间的相对位置或者子类控件相对父类容器的位置的方式排列 二.RelativeLayo ...

  4. Htmlt_Div+Css简介

    DIV+CSS是网站标准(或称“WEB标准”)中常用术语之一,通常为了说明与HTML网页设计语言中的表格(table)定位方式的区别,因为XHTML网站设计标准中,不再使用表格定位技术,而是采用DIV ...

  5. PHP_解析xss攻击、sql注入

    /** * PHP解决XSS(跨站脚本攻击)的调用函数 * PHP跨站脚本漏洞补丁,去除XSS(跨站脚本攻击)的函数,把以下代码保存在function.php文件中,在需要防御的页面中include ...

  6. vs2010工程迁移问题,x64到Win32

    ALL_BUILD:vcxproj:找不到项目文件“ALL_BUILD”中引用的平台“x64”.请确保已将该平台安装在“%VCTargetsPath%\Platforms\x64”下.无法加载项目. ...

  7. phalcon: eventManager事件管理(结合dispatcher调度控制器)制作简单的acl

    制作简单的acl, dispatcher(专门用来加载或调度或跳转到相应的url地址即XXXcontroller的调度器或控制器,能够在controller执行前对controller进行停止跳转等) ...

  8. Android 使用dagger2进行依赖注入(基础篇)

    0. 前言 Dagger2是首个使用生成代码实现完整依赖注入的框架,极大减少了使用者的编码负担,本文主要介绍如何使用dagger2进行依赖注入.如果你不还不了解依赖注入,请看这一篇. 1. 简单的依赖 ...

  9. VBA控件一些属性的解释

    VBA每个控件都有很多属性,虽然可以按照分类排序,但由于没有中文解释,有些属性也不了解如何使用,下面是一些控件属性的解释,不全,可供参考: 常规AutoLoad (Excel)打开工作簿时是否加载控件 ...

  10. hdu----(2222)Keywords Search(trie树)

    Keywords Search Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...