hdu 5317 RGCDQ(前缀和)
题目链接:hdu 5317
这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R),只需要求出它们在 1~7 的范围内的数量,然后暴力求出 gcd 即可。因为符合递增,可以设一个结点 struct { v[8]; } 记录 1~7 的数量,结点间可以相加减,也就可以用前缀和的思想去做(其实我也是看了别人的题解才明白这种思想,一开始用二分不是超时就是 wa 了,不过我竟发现自己手写的二分比库函数 lower_bound 要快!而且至少快 7~8 倍以上!看来以后用二分都尽量自己手写好了 (ㄒoㄒ)~~ )
先附上用前缀和的思想的代码,加入了输入输出挂:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ; struct node {
int v[];
node() { memset(v,,sizeof(v)); }
node operator + (const node &n2) const {
node add;
for(int i = ; i <= ; ++i)
add.v[i] = v[i] + n2.v[i];
return add;
}
node operator - (const node &n2) const {
node sub;
for(int i = ; i <= ; ++i)
sub.v[i] = v[i] - n2.v[i];
return sub;
}
node& operator += (const node &n2) {
*this = *this + n2;
return *this;
}
node& operator -= (const node &n2) {
return *this = *this - n2;
}
}; int num[N];
node _count[N];
inline void init(int n = N - ) {
for(int i = ; i <= n; ++i)
if(!num[i])
for(int j = i; j <= n; j += i) ++num[j];
for(int i = ; i <= n; ++i) {
node tmp;
++tmp.v[num[i]];
_count[i] = _count[i - ] + tmp;
}
} inline int gcd(int a, int b) {
return b == ? a: gcd(b, a % b);
} #include<cctype>
template <typename T>
inline void read(T &x) {
x = ;
char ch = getchar();
bool flag = ;
while(!isdigit(ch) && ch != '-') ch = getchar();
if(ch == '-') {
flag = ;
ch = getchar();
}
while(isdigit(ch)) {
x = x * + (ch - '');
ch = getchar();
}
if(flag) x = -x;
} template <typename T>
inline void write(const T &x) {
if(x < ) putchar(char(x + ''));
else write(x / );
} int main() {
int t,L,R;
init();
read(t);
while(t--) {
read(L); read(R);
node p = _count[R] - _count[L - ];
int ans = ;
for(int i = ; i <= ; ++i) {
if(!p.v[i]) continue;
--p.v[i];
for(int j = i; j <= ; ++j)
if(p.v[j]) ans = max(ans, gcd(i,j));
++p.v[i];
}
write(ans);
puts("");
}
return ;
}
说到前缀和,就可以联想起高效动态维护前缀和的树状数组。没错,只要能求前缀和的数据结构,都能用树状数组去维护,它的适用范围不只是简单的 int,long long 或者 一维数组(二维树状数组去维护)等等。因此我定义成模板类:
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
const int N = ; struct node {
int v[];
void clear() { memset(v,,sizeof(v)); }
node() { clear(); }
node operator + (const node &n2) const {
node add;
for(int i = ; i <= ; ++i)
add.v[i] = v[i] + n2.v[i];
return add;
}
node operator - (const node &n2) const {
node sub;
for(int i = ; i <= ; ++i)
sub.v[i] = v[i] - n2.v[i];
return sub;
}
}; #define lowbit(x) ((x)&-(x))
template <typename T>
struct tree {
T c[N];
int maxn;
void clear() { // 或者直接 memset(c, 0, sizeof(c)) 也可以;
for(int i = ; i <= maxn; ++i)
c[i].clear();
}
tree(int maxn = N - ): maxn(maxn) { clear(); }
T sum(int x) const {
T res;
while(x) {
res = res + c[x];
x -= lowbit(x);
}
return res;
}
void add(int x, T d) {
while(x <= maxn) {
c[x] = c[x] + d;
x += lowbit(x);
}
}
}; tree<node> tr; int num[N];
void init(int n = N - ) {
for(int i = ; i <= n; ++i)
if(!num[i])
for(int j = i; j <= n; j += i) ++num[j];
for(int i = ; i <= n; ++i) {
node tmp;
++tmp.v[num[i]];
tr.add(i, tmp);
}
} inline int gcd(int a, int b) {
return b == ? a: gcd(b, a % b);
} int main() {
int t,L,R;
init();
scanf("%d",&t);
while(t--) {
scanf("%d %d",&L,&R);
node p = tr.sum(R) - tr.sum(L - );
int ans = ;
for(int i = ; i <= ; ++i) {
if(!p.v[i]) continue;
--p.v[i];
for(int j = i; j <= ; ++j)
if(p.v[j]) ans = max(ans, gcd(i, j));
++p.v[i];
}
printf("%d\n",ans);
}
return ;
}
hdu 5317 RGCDQ(前缀和)的更多相关文章
- hdu 5317 RGCDQ (2015多校第三场第2题)素数打表+前缀和相减求后缀(DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5317 题意:F(x) 表示x的不同质因子的个数结果是求L,R区间中最大的gcd( F(i) , F(j ...
- HDU 5317 RGCDQ(素数个数 多校2015啊)
题目链接:pid=5317" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=5317 Prob ...
- ACM学习历程—HDU 5317 RGCDQ (数论)
Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...
- HDU 5317 RGCDQ (数论素筛)
RGCDQ Time Limit: 3000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Submit Status ...
- 2015 Multi-University Training Contest 3 hdu 5317 RGCDQ
RGCDQ Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- HDU 5317 RGCDQ (质数筛法,序列)
题意:从1~1000,000的每个自然数质因子分解,不同因子的个数作为其f 值,比如12=2*2*3,则f(12)=2.将100万个数转成他们的f值后变成新的序列seq.接下来T个例子,每个例子一个询 ...
- HDU 5317 RGCDQ
题意:f(i)表示i的质因子个数,给l和r,问在这一区间内f(i)之间任意两个数最大的最大公倍数是多少. 解法:先用筛法筛素数,在这个过程中计算f(i),因为f(i)不会超过7,所以用一个二维数组统计 ...
- 2015 HDU 多校联赛 5317 RGCDQ 筛法求解
2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目 http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...
- hdu 5317 合数分解+预处理
RGCDQ Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
随机推荐
- IIS装好后,局域网不能访问
IIS默认安装完成后,可以通过http:\\localhost或http:\\127.0.0.1或者http:\\ip地址访问,但是局域网内却不能通过IP来访问,通常只需要将防火墙关掉就好了,也在在防 ...
- sass的安装与基础
安装教程:http://www.haorooms.com/post/sass_css 手册:http://sass.bootcss.com/docs/guide/ http://www.w3c ...
- #ifdef DEBUG的理解
今天看到一段代码,对ifdef的概念比较模糊,于是去学习了一下,找到一个很好的解释,如下: 在工程设置里有一些设置会对该工程自动产生一系列的宏,用以控制程序的编译和运行.就好象楼上说的一样,如果你把代 ...
- 关于qquu8 的主页修改
1) 找到 这个文件夹 C:\Users\lidu\AppData\Roaming\Microsoft\Internet Explorer\Quick Launch\User Pinned\TaskB ...
- CAShapeLayer 与贝塞尔曲线
一 CAShapeLayer 简介 1,CAShapeLayer继承至CALayer,可以使用CALayer的所有属性 2,CAShapeLayer需要与贝塞尔曲线配合使用才有意义:单独使用毫无意义 ...
- SqlSever基础 except 差集 前一个结果中不含有后一个结果的元素
镇场诗:---大梦谁觉,水月中建博客.百千磨难,才知世事无常.---今持佛语,技术无量愿学.愿尽所学,铸一良心博客.------------------------------------------ ...
- 一维条码打印的C#实现(Code128)
1.CODE128基础知识 CODE128有三个版本: CODE128A: 标准数字和字母, 控制符, 特殊字符 CODE128B: 标准数字和字母, 小写字母, 特殊字符 CODE128C: [00 ...
- Bug避障算法简介
移动机器人智能的一个重要标志就是自主导航,而实现机器人自主导航有个基本要求--避障.避障是指移动机器人根据采集的障碍物的状态信息,在行走过程中通过传感器感知到妨碍其通行的静态和动态物体时,按照一定的方 ...
- mysql以ROOT权限提权方法
今天feng问了一个问题,mysql root权限运行,直接root服务器吧,SSH登录 正好上网查一下相关的资料: mysql .x里面引入了一个system函数,这个函数可以执行系统命令,当mys ...
- JBOSS批量扫描
exploit-db提供出了EXP,如下: /* * JBoss JMXInvokerServlet Remote Command Execution * JMXInvoker.java v0.3 - ...