vjudge 上题目链接:uva 11324

  scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选。把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它的结点数,则题目转化为求 SCC 图上权最大的路径。由于 SCC 图是一个 DAG, 可以用动态规划求解。"

  一开始我理解成了求所有结点的权值和,后来才明白所求的结果一定是 scc 上一条路径来的,即不能有任何分叉路径。我的代码如下:

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int N = ; vector<int> G[N], G2[N];
bool vis[N];
int sccno[N], scc_cnt, p[N];
vector<int> S; void dfs(int x) {
vis[x] = ;
for(int i = ; i < G[x].size(); ++i)
if(!vis[G[x][i]]) dfs(G[x][i]);
S.push_back(x);
} void dfs2(int x, int &num) {
if(sccno[x]) return ;
sccno[x] = scc_cnt;
++num;
for(int i = ; i < G2[x].size(); ++i)
dfs2(G2[x][i], num);
} void find_scc(int n) {
memset(vis, , sizeof vis);
S.clear();
for(int i = ; i < n; ++i)
if(!vis[i]) dfs(i); memset(sccno, , sizeof sccno);
memset(p, , sizeof p);
scc_cnt = ;
for(int i = n - ; i >= ; --i)
if(!sccno[S[i]]) {
++scc_cnt;
int num = ;
dfs2(S[i], num);
p[scc_cnt] = num;
}
} vector<int> d[N];
void debug(int n) {
for(int i = ; i < n; ++i)
d[i].clear();
for(int i = ; i < n; ++i)
d[sccno[i]].push_back(i); for(int u = ; u <= scc_cnt; ++u) {
printf("sccno[%d]: ",u);
for(int i = ; i < d[u].size(); ++i)
printf("%d ",d[u][i] + );
printf(" num = %d p[%d] = %d\n", d[u].size(), u, p[u]);
}
} vector<int> g3[N];
int node(int x) {
if(vis[x]) return p[x];
vis[x] = ;
int Max = ;
for(int i = ; i < g3[x].size(); ++i)
Max = max(Max, node(g3[x][i]));
return p[x] += Max;
} void new_graph(int n) {
for(int i = ; i <= n; ++i)
g3[i].clear();
for(int u = ; u < n; ++u)
for(int i = ; i < G[u].size(); ++i) {
int v = G[u][i];
if(sccno[u] != sccno[v]) g3[sccno[u]].push_back(sccno[v]);
}
memset(vis, , sizeof vis);
int ans = ;
for(int i = ; i <= scc_cnt; ++i)
ans = max(ans, node(i));
printf("%d\n",ans);
} int main() {
int t,n,m,x,y;
scanf("%d",&t);
while(t--) {
scanf("%d %d",&n,&m);
for(int i = ; i < n; ++i) {
G[i].clear();
G2[i].clear();
}
while(m--) {
scanf("%d %d",&x,&y);
--x; --y;
G[x].push_back(y);
G2[y].push_back(x);
}
find_scc(n);
// debug(n);
new_graph(n);
}
return ;
}

uva 11324 The Largest Clique的更多相关文章

  1. UVA 11324 - The Largest Clique(强连通分量+缩点)

    UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...

  2. uva 11324 The Largest Clique(图论-tarjan,动态规划)

    Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...

  3. uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...

  4. uva 11324 The Largest Clique (Tarjan+记忆化)

    /*每个环 要么不选 要么全选 可缩点 就得到一个GAD图 然后搞搞算出最大路径*/ #include<iostream> #include<cstdio> #include& ...

  5. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

  6. UVA 11324 The Largest Clique(强连通分量+缩点DAG的DP)

    题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出 ...

  7. UVA 11324.The Largest Clique tarjan缩点+拓扑dp

    题目链接:https://vjudge.net/problem/UVA-11324 题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相 ...

  8. UVa 11324 The Largest Clique (强连通分量+DP)

    题意:给定一个有向图,求一个最大的结点集,使得任意两个结点,要么 u 能到 v,要么 v 到u. 析:首先,如果是同一个连通分量,那么要么全选,要么全不选,然后我们就可以先把强连通分量先求出来,然后缩 ...

  9. UVA - 11324 The Largest Clique (强连通缩点+dp)

    题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...

随机推荐

  1. SDUT 2409:The Best Seat in ACM Contest

    The Best Seat in ACM Contest Time Limit: 1000MS Memory limit: 65536K 题目描述 Cainiao is a university st ...

  2. Visual Studio + SqlServer

    vs2010: http://pan.baidu.com/s/1eQrlUwU sqlServer2008: http://pan.baidu.com/s/1sjQbyk1

  3. JMeter基于http请求的web接口性能测试总结

    [本文出自天外归云的博客园] 基于http请求的web接口性能测试总结 压测的目的:对于Web接口压测的目的最终是要在对数据库造成压力的情况下观察压测服务器的cpu是否达到预警值.memory是否发生 ...

  4. EasyUI 自定义DataGrid分页

    DataGrid内建分页能力是强大的,它比自定义相对容易.在这个教程,我们将要创建DataGrid并且在页面工具栏中添加一些自定义按钮.标记<table id="tt"> ...

  5. 洛谷 P1896 [SCOI2005]互不侵犯King

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...

  6. Json 入门例子【2】

    <script> var json1 = { "id": 1, "tagName": "apple" }; $("#f ...

  7. Python3基础 print 输出hello world

    镇场诗:---大梦谁觉,水月中建博客.百千磨难,才知世事无常.---今持佛语,技术无量愿学.愿尽所学,铸一良心博客.------------------------------------------ ...

  8. FreeSWITCH一些需求应对

    一.用户号码组 听到这个名词的时候,心中还挺迷茫,需求如下: 一个用户分配号码为800,但是这个用户有一部座机,两部手机:有人拨打800这个号码时,这个用户的所有关联终端都要振铃. 其实就是用户号码多 ...

  9. CentOS 7下编译FreeSWITCH 1.6

    安装背景: 已经最小化安装CentOS 7. 准备工作: 挂载安装光盘,配置yum本地化安装,配置方法可以参考http://www.cnblogs.com/yoyotl/p/4877439.html. ...

  10. 8.Methods(一)

    1.Instance Constructors and Classes (Reference Types) Constructors methods : 1.allow an instance of ...