51nod1434 区间LCM
将n!标准分解。m!/n!必定需要包含n!的分解式。对于每个质数枚举最小的答案,然后总的取最大。
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<cmath>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int nmax=1e6+5;
int pe[nmax<<3];bool vis[nmax+1];
int main(){
int cnt=0,tp;
rep(i,2,nmax) {
if(!vis[i]) pe[++cnt]=i;
rep(j,1,cnt){
tp=pe[j];if((ll)tp*i>nmax) break;vis[tp*i]=1;
if(i%tp==0) break;
}
}
int t=read(),u,v,d;
while(t--){
int n=read(),ans=n;
if(n==1){
printf("2\n");continue;
}
rep(i,1,cnt){
if(pe[i]>n) break;
tp=1;u=(int)(log(n)/log(pe[i]));
v=(int)pow(pe[i],u);
for(int j=2;;++j) if(v*j>n) {
v*=j;break;
}
ans=max(ans,v);
}
printf("%d\n",ans);
}
return 0;
}
多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5
每组测试数据有相同的结构构成:
每组数据一行一个整数N,1<=N<=1000000。
每组数据一行输出,即M的最小值。
3
1
2
3
2
4
6
51nod1434 区间LCM的更多相关文章
- 1434 区间LCM
1434 区间LCM 基准时间限制:1 秒 空间限制:131072 KB 一个整数序列S的LCM(最小公倍数)是指最小的正整数X使得它是序列S中所有元素的倍数,那么LCM(S)=X. 例如,LCM(2 ...
- 51nod部分容斥题解
51nod1434 区间LCM 跟容斥没有关系.首先可以确定的一个结论是:对于任意正整数,有1*2*...*n | (k+1)*(k+2)*...*(k+n).因为这就是$C_{n+k}^{k}$. ...
- 51nod 1434 理解lcm
1434 区间LCM 题目来源: TopCoder 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个整数序列S的LCM(最小公倍数)是指最小的正 ...
- 【倍增】LCM QUERY
给一个序列,每次给一个长度l,问长度为l的区间中lcm最小的. 题解:因为ai<60,所以以某个点为左端点的区间的lcm只有最多60种的情况,而且相同的lcm区间的连续的. 所以就想到一个n*6 ...
- HDU3579:Hello Kiki(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...
- 【题解】51nod 1203JZPLCM问题
这题好强强啊,貌似是集训队原题?集训队原题当中值域是1e9的范围,这样各种乱搞是妥妥的不能过了,只能写正解的离线+树状数组维护前缀积. 最开始我写了几种乱搞做法,包括莫队和线段树做法.其中表现比较优秀 ...
- NOIP2018提高组金牌训练营——数论专题
地址 https://www.51nod.com/live/liveDescription.html#!liveId=23 1187 寻找分数 给出 a,b,c,d, 找一个分数p/q,使得a/b & ...
- 【JZOJ4860】【NOIP2016提高A组集训第7场11.4】分解数
题目描述 Dpstr学习了动态规划的技巧以后,对数的分解问题十分感兴趣. Dpstr用此过程将一个正整数x分解成若干个数的乘积:一开始令集合A中只有一个元素x,每次分解时从A中取一个元素a并找出两个大 ...
- SPOJ LGLOVE 7488 LCM GCD Love (区间更新,预处理出LCM(1,2,...,n))
题目连接:http://www.spoj.com/problems/LGLOVE/ 题意:给出n个初始序列a[1],a[2],...,a[n],b[i]表示LCM(1,2,3,...,a[i]),即1 ...
随机推荐
- Sqli-labs less 26a
Less-26a 这关与26的区别在于,sql语句添加了一个括号,同时在sql语句执行抛出错误后并不在前台页面输出.所有我们排除报错注入,这里依旧是利用union注入. sql语句为SELECT * ...
- LINUX下的时间与时区的设置
在RHEL下,如果只装英文版系统,设置好时区以后(上海时间,UTC) 在命令行下用date命令查看,总是与实际的北京时间差8小时,其实硬件时间都是准确的.会带来视觉不便. 今天下决心解决此问题,不过也 ...
- CAP定理与RDBMS的ACID
一.分布式领域CAP理论 CAP定理指在设计分布式系统时,一致性(Consistent).可用性(Availability).可靠性(分区容忍性Partition Tolerance)三个属性不可能同 ...
- HDU4916 Count on the path(树dp??)
这道题的题意其实有点略晦涩,定义f(a,b)为 minimum of vertices not on the path between vertices a and b. 其实它加一个minimum ...
- CSS Devices可以让你在线直接获取使用CSS写的Mobile外形。
CSS Devices可以让你在线直接获取使用CSS写的Mobile外形. CSS Devices 彩蛋爆料直击现场
- Unix安装BerkeleyDB
下载安装包Berkeley DB 5.3.21.tar.gz http://www.oracle.com/technetwork/products/berkeleydb/downloads/index ...
- IOS快速集成下拉上拉刷新
http://code4app.com/ios/%E5%BF%AB%E9%80%9F%E9%9B%86%E6%88%90%E4%B8%8B%E6%8B%89%E4%B8%8A%E6%8B%89%E5% ...
- hdu 4259 Double Dealing
思路: 找每一个数的循环节,注意优化!! 每次找一个数的循环节时,记录其路径,下次对应的数就不用再找了…… 代码如下: #include<iostream> #include<cst ...
- excel设置下拉菜单,并且不同值会显示不同颜色
工作中常常要用的excel,每次都会有新的需求,然后不会,然后百度,然后过段时间可能就又忘了,于是就想说,自己记录下来~~~因为自己用的都是2010,其实哪个版本都差不多,都是应该可以找到相应的按钮滴 ...
- servlet学习笔记四
Servlet 主要内容: 1)servlet初始化参数与上下文参数 2)过滤器 3)监听器一.servlet初始化参数与上下文参数 1)servlet初始化参数 把某些变量放在web.xml配置,到 ...