作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

语言的内存管理是语言设计的一个重要方面。它是决定语言性能的重要因素。无论是C语言的手工管理,还是Java的垃圾回收,都成为语言最重要的特征。这里以Python语言为例子,说明一门动态类型的、面向对象的语言的内存管理方式。

对象的内存使用

赋值语句是语言最常见的功能了。但即使是最简单的赋值语句,也可以很有内涵。Python的赋值语句就很值得研究。

a = 1

整数1为一个对象。而a是一个引用。利用赋值语句,引用a指向对象1。Python是动态类型的语言(参考动态类型),对象与引用分离。Python像使用“筷子”那样,通过引用来接触和翻动真正的食物——对象。

引用和对象

为了探索对象在内存的存储,我们可以求助于Python的内置函数id()。它用于返回对象的身份(identity)。其实,这里所谓的身份,就是该对象的内存地址。

a = 1

print(id(a))
print(hex(id(a)))

在我的计算机上,它们返回的是:

11246696
'0xab9c68'

分别为内存地址的十进制和十六进制表示。

在Python中,整数和短小的字符,Python都会缓存这些对象,以便重复使用。当我们创建多个等于1的引用时,实际上是让所有这些引用指向同一个对象。

a = 1
b = 1 print(id(a))
print(id(b))

上面程序返回

11246696

11246696

可见a和b实际上是指向同一个对象的两个引用。

为了检验两个引用指向同一个对象,我们可以用is关键字。is用于判断两个引用所指的对象是否相同。

# True
a = 1
b = 1
print(a is b) # True
a = "good"
b = "good"
print(a is b) # False
a = "very good morning"
b = "very good morning"
print(a is b) # False
a = []
b = []
print(a is b)

上面的注释为相应的运行结果。可以看到,由于Python缓存了整数和短字符串,因此每个对象只存有一份。比如,所有整数1的引用都指向同一对象。即使使用赋值语句,也只是创造了新的引用,而不是对象本身。长的字符串和其它对象可以有多个相同的对象,可以使用赋值语句创建出新的对象。

在Python中,每个对象都有存有指向该对象的引用总数,即引用计数(reference count)。

我们可以使用sys包中的getrefcount(),来查看某个对象的引用计数。需要注意的是,当使用某个引用作为参数,传递给getrefcount()时,参数实际上创建了一个临时的引用。因此,getrefcount()所得到的结果,会比期望的多1。

from sys import getrefcount

a = [1, 2, 3]
print(getrefcount(a)) b = a
print(getrefcount(b))

由于上述原因,两个getrefcount将返回2和3,而不是期望的1和2。

对象引用对象

Python的一个容器对象(container),比如表、词典等,可以包含多个对象。实际上,容器对象中包含的并不是元素对象本身,是指向各个元素对象的引用。

我们也可以自定义一个对象,并引用其它对象:

class from_obj(object):
def __init__(self, to_obj):
self.to_obj = to_obj b = [1,2,3]
a = from_obj(b)
print(id(a.to_obj))
print(id(b))

可以看到,a引用了对象b。

对象引用对象,是Python最基本的构成方式。即使是a = 1这一赋值方式,实际上是让词典的一个键值"a"的元素引用整数对象1。该词典对象用于记录所有的全局引用。该词典引用了整数对象1。我们可以通过内置函数globals()来查看该词典。

当一个对象A被另一个对象B引用时,A的引用计数将增加1。

from sys import getrefcount

a = [1, 2, 3]
print(getrefcount(a)) b = [a, a]
print(getrefcount(a))

由于对象b引用了两次a,a的引用计数增加了2。

容器对象的引用可能构成很复杂的拓扑结构。我们可以用objgraph包来绘制其引用关系,比如

x = [1, 2, 3]
y = [x, dict(key1=x)]
z = [y, (x, y)] import objgraph
objgraph.show_refs([z], filename='ref_topo.png')

objgraph是Python的一个第三方包。安装之前需要安装xdot。(在 ubuntu 系统 python 2.7.3 下安装 objgraph1.8 版本导入模块时总是报错找不到模块,安装低版本 sudo pip install 'objgraph<1.8' 导入模块成功

sudo apt-get install xdot
sudo pip install objgraph

objgraph官网

两个对象可能相互引用,从而构成所谓的引用环(reference cycle)。

a = []
b = [a]
a.append(b)

即使是一个对象,只需要自己引用自己,也能构成引用环。

a = []
a.append(a)
print(getrefcount(a))

引用环会给垃圾回收机制带来很大的麻烦,我将在后面详细叙述这一点。

引用减少

某个对象的引用计数可能减少。比如,可以使用del关键字删除某个引用:

from sys import getrefcount

a = [1, 2, 3]
b = a
print(getrefcount(b)) del a
print(getrefcount(b))

del也可以用于删除容器元素中的元素,比如:

a = [1,2,3]
del a[0]
print(a)

如果某个引用指向对象A,当这个引用被重新定向到某个其他对象B时,对象A的引用计数减少:

from sys import getrefcount

a = [1, 2, 3]
b = a
print(getrefcount(b)) a = 1
print(getrefcount(b))

垃圾回收

吃太多,总会变胖,Python也是这样。当Python中的对象越来越多,它们将占据越来越大的内存。不过你不用太担心Python的体形,它会乖巧的在适当的时候“减肥”,启动垃圾回收(garbage collection),将没用的对象清除。在许多语言中都有垃圾回收机制,比如Java和Ruby。尽管最终目的都是塑造苗条的提醒,但不同语言的减肥方案有很大的差异 (这一点可以对比本文和Java内存管理与垃圾回收

)。

从基本原理上,当Python的某个对象的引用计数降为0时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了。比如某个新建对象,它被分配给某个引用,对象的引用计数变为1。如果引用被删除,对象的引用计数为0,那么该对象就可以被垃圾回收。比如下面的表:

a = [1, 2, 3]
del a

del a后,已经没有任何引用指向之前建立的[1, 2, 3]这个表。用户不可能通过任何方式接触或者动用这个对象。这个对象如果继续待在内存里,就成了不健康的脂肪。当垃圾回收启动时,Python扫描到这个引用计数为0的对象,就将它所占据的内存清空。

然而,减肥是个昂贵而费力的事情。垃圾回收时,Python不能进行其它的任务。频繁的垃圾回收将大大降低Python的工作效率。如果内存中的对象不多,就没有必要总启动垃圾回收。所以,Python只会在特定条件下,自动启动垃圾回收。当Python运行时,会记录其中分配对象(object allocation)和取消分配对象(object deallocation)的次数。当两者的差值高于某个阈值时,垃圾回收才会启动。

我们可以通过gc模块的get_threshold()方法,查看该阈值:

import gc
print(gc.get_threshold())

返回(700, 10, 10),后面的两个10是与分代回收相关的阈值,后面可以看到。700即是垃圾回收启动的阈值。可以通过gc中的set_threshold()方法重新设置。

我们也可以手动启动垃圾回收,即使用gc.collect()。

分代回收

Python同时采用了分代(generation)回收的策略。这一策略的基本假设是,存活时间越久的对象,越不可能在后面的程序中变成垃圾。我们的程序往往会产生大量的对象,许多对象很快产生和消失,但也有一些对象长期被使用。出于信任和效率,对于这样一些“长寿”对象,我们相信它们的用处,所以减少在垃圾回收中扫描它们的频率。

小家伙要多检查

Python将所有的对象分为0,1,2三代。所有的新建对象都是0代对象。当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代对象。垃圾回收启动时,一定会扫描所有的0代对象。如果0代经过一定次数垃圾回收,那么就启动对0代和1代的扫描清理。当1代也经历了一定次数的垃圾回收后,那么会启动对0,1,2,即对所有对象进行扫描。

这两个次数即上面get_threshold()返回的(700, 10, 10)返回的两个10。也就是说,每10次0代垃圾回收,会配合1次1代的垃圾回收;而每10次1代的垃圾回收,才会有1次的2代垃圾回收。

同样可以用set_threshold()来调整,比如对2代对象进行更频繁的扫描。

import gc
gc.set_threshold(700, 10, 5)

孤立的引用环

引用环的存在会给上面的垃圾回收机制带来很大的困难。这些引用环可能构成无法使用,但引用计数不为0的一些对象。

a = []
b = [a]
a.append(b) del a
del b

上面我们先创建了两个表对象,并引用对方,构成一个引用环。删除了a,b引用之后,这两个对象不可能再从程序中调用,就没有什么用处了。但是由于引用环的存在,这两个对象的引用计数都没有降到0,不会被垃圾回收。

孤立的引用环

为了回收这样的引用环,Python复制每个对象的引用计数,可以记为gc_ref。假设,每个对象i,该计数为gc_ref_i。Python会遍历所有的对象i。对于每个对象i引用的对象j,将相应的gc_ref_j减1。

遍历后的结果

在结束遍历后,gc_ref不为0的对象,和这些对象引用的对象,以及继续更下游引用的对象,需要被保留。而其它的对象则被垃圾回收。

总结

Python作为一种动态类型的语言,其对象和引用分离。这与曾经的面向过程语言有很大的区别。为了有效的释放内存,Python内置了垃圾回收的支持。Python采取了一种相对简单的垃圾回收机制,即引用计数,并因此需要解决孤立引用环的问题。Python与其它语言既有共通性,又有特别的地方。对该内存管理机制的理解,是提高Python性能的重要一步。

python 内存管理的更多相关文章

  1. 解读Python内存管理机制

    转自:http://developer.51cto.com/art/201007/213585.htm 内存管理,对于Python这样的动态语言,是至关重要的一部分,它在很大程度上甚至决定了Pytho ...

  2. 转发:[Python]内存管理

    本文为转发,原地址为:http://chenrudan.github.io/blog/2016/04/23/pythonmemorycontrol.html 本文主要为了解释清楚python的内存管理 ...

  3. Python内存管理机制及优化简析(转载)

    from:http://kkpattern.github.io/2015/06/20/python-memory-optimization-zh.html 准备工作 为了方便解释Python的内存管理 ...

  4. 【python测试开发栈】python内存管理机制(一)—引用计数

    什么是内存 在开始进入正题之前,我们先来回忆下,计算机基础原理的知识,为什么需要内存.我们都知道计算机的CPU相当于人类的大脑,其运算速度非常的快,而我们平时写的数据,比如:文档.代码等都是存储在磁盘 ...

  5. 【python测试开发栈】—python内存管理机制(二)—垃圾回收

    在上一篇文章中(python 内存管理机制-引用计数)中,我们介绍了python内存管理机制中的引用计数,python正是通过它来有效的管理内存.今天来介绍python的垃圾回收,其主要策略是引用计数 ...

  6. 变量、数据类型、python内存管理

    pycharm快捷键 ctrl + c 复制, 默认复制整行 ctrl + v 粘贴 ctrl + x 剪切 ctrl + a 全选 ctrl + z 撤销 ctrl + f 查找 ctrl + sh ...

  7. python内存管理(通俗易懂,详细可靠)

    python内存管理 python3.6.9 内存管理的官方文档 https://docs.python.org/zh-cn/3.6/c-api/memory.html 一.变量存哪了? x = 10 ...

  8. Python内存管理机制-《源码解析》

    Python内存管理机制 Python 内存管理分层架构 /* An object allocator for Python. Here is an introduction to the layer ...

  9. python内存管理&垃圾回收

    python内存管理&垃圾回收 引用计数器 环装双向列表refchain 在python程序中创建的任何对象都会放在refchain连表中 name = '张三' age = 18 hobby ...

  10. python内存管理总结

    之前在学习与工作中或多或少都遇到关于python内存管理的问题,现在将其梳理一下. python内存管理机制 第0层 操作系统提供的内存管理接口 c实现 第1层 基于第0层操作系统内存管理接口包装而成 ...

随机推荐

  1. NSArray、NSMutableArray基本用法

    NSArray.NSMutableArray基本用法 一.基本操作 初始化方法:1.init返回一个空数组 2.initWithArray从已有数组初始化 3.initWithContentsOfFi ...

  2. win7-opengl开发环境的搭建

    1. glut的安装: 下载glutdlls37beta.zip,下载链接直接opengl.org上找. 把glut.h 复制到include下: glut.lib, glut32.lib复制到C:\ ...

  3. python学习笔记(MD5算法)

    博主最近进度停滞了 对web开发理解欠缺好多内容 今天整理下MD5算法,这个涉及到mysql数据库存储用户表密码字段的时候 一般是带有加密的 # -*- coding: utf-8 -*- impor ...

  4. 关于lambda表达式在javascript中的使用

    了解过js函数的同学应该都知道js的函数有很多种创建方式. 如: function fun(){}: var fun=function(){}: 但最近的学习中发现了lambda表达式型的创建js的匿 ...

  5. 操作系统是怎么工作的——函数的堆栈框架/嵌入式代码

    1.函数堆栈框架 1.1框架模型 call指令: 1)将eip中的下一条指令的地址A保存在栈顶: 2)设置eip指向被调用程序的代码处. ret指令:将地址A恢复到eip中 这样就将函数的调用变为顺序 ...

  6. 学习练习 java 集合

    将1—100之间的所有正整数存放在一个List集合中,并将集合中索引位置是10的对象从集合中移除 package com.hanqi; import java.util.*; public class ...

  7. Visual Studio 2010 C++ 工程文件解读

    在 VS2010 中,C++ 的工程文件已经和 2005 / 2008 有了很大的不同,而是完全采用 MSBUILD 的属性方式进行表达,并且可以让用户通过一次性的配置而对所有的属性进行自定义: 根据 ...

  8. 华为OJ平台——计算字符串的相似度

    题目描述: 对于不同的字符串,我们希望能有办法判断相似程度,我们定义了一套操作方法来把两个不相同的字符串变得相同,具体的操作方法如下: 1 修改一个字符,如把“a”替换为“b”. 2 增加一个字符,如 ...

  9. Tomcat安装后启动一闪而过

    出现这种问题一般是环境变量没配置好.除了JDK环境变量还有Tomcat环境变量:CATALINA_HOME 和CATALINA_BASE 虽然JDK里面会含有JRE,但是最好是在环境变量里面也配置一个 ...

  10. Qt中QObject中的parent参数

    今天写了一个小程序,验证了带参的构造函数中参数parent的作用. 在MainWindow中声明一个QDialog类型的指针,在MainWindow中对它进行初始化.我采用了两种初始化方式,一种是带参 ...