Network of Schools(强连通分量缩点(邻接表&矩阵))
Description
in the distribution list of school A, then A does not necessarily appear in the list of school B
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.
Input
the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.
Output
Sample Input
5
2 4 3 0
4 5 0
0
0
1 0
Sample Output
1
2
开始用桥来判断是不是同一个连通分量,结果果断错了,其实下图应该就会出错
原因是通过头插法先遍历3,结果3的出度为0,由于2通向3已经访问过,因此不能在访问,因此2-->3的路没有标志cut,没法统计这天边的出入度情况,因此出度为0的变为2个了,正确答案应该是1个,所以错了,不能企图通过桥来算出出度入度
错误代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MOD 100000
#define inf 1<<29
#define LL long long
#define MAXN 20010
#define MAXM = 50010
using namespace std;
struct Edge
{
int to,next;
bool cut;
} edge[MAXN]; int head[MAXN],tot;
int low[MAXN],DFN[MAXN],belong[MAXN];///belong 的值为1-block
int index,top,fenzhiNum;
int block ; ///强连通分量
bool inStack[MAXN];
int bridgeNum; ///桥的数目
int stack[MAXN];
int vis[MAXN];
int inans,outans;
int outdu[MAXN];
int indu[MAXN]; void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].cut = false;
head[u] = tot++ ;
}
void ini(){
index = block = top = fenzhiNum = 0;
inans = 0, outans = 0 ;
memset(DFN,0,sizeof(DFN));
memset(inStack,false,sizeof(inStack));
memset(vis,0,sizeof(vis));
memset(outdu,0,sizeof(outdu));
memset(indu,0,sizeof(indu));
}
void Tarjan(int u)
{
vis[u] = true;
int v;
low[u] = DFN[u] = ++index;
stack[top++] = u;
inStack[u] = true;
for(int i=head[u] ; i!=-1 ; i=edge[i].next)
{
v = edge[i].to;
//if( v == pre ) continue; ///因为是无向图,所以两条是双向的,所以只遍历一条就够了
if( !DFN[v] )
{
Tarjan(v );
if(low[u]>low[v])
low[u] = low[v];
if(low[v] > DFN[u] ){
bridgeNum++;
edge[i].cut = true;
//edge[i^1].cut = true; ///将两条双向边都设置为桥
} }
else if( inStack[v] && low[u] > DFN[v])
low[u] = DFN[v];
}
if(low[u] == DFN[u])
{
block++;
do
{
v=stack[--top]; ///清空当前强连通分量栈 必须清空
inStack[v] = false;
belong[v]=block; ///v节点都编号为block 也就是这是一个块
}
while(v!=u);
}
} void solve(int N)
{
ini();
for(int i=1;i<=N;i++)
if(!vis[i])
Tarjan(i);
for(int i=1; i<=N ; i++){ ///缩点
for(int j=head[i] ; j!=-1 ; j=edge[j].next)
if( edge[j].cut)//belong[i]!=belong[ edge[j].to ])//edge[j].cut )
indu[ belong[ edge[j].to ] ]++,outdu[ belong[i] ]++ ;
}
for(int i=1;i<=block ;i++)
if(indu[i] == 0)
inans++;
for(int i=1;i<=block ;i++)
if(outdu[i] == 0)
outans++;
// printf("indu=%d,outdu=%d\n",inans,outans);
if(block == 1) printf("1\n0\n");
else printf("%d\n%d\n",inans,max(inans,outans));
//printf("%d\n",(ans+1)/2 );
} int main ()
{
int n,m;
while(~scanf("%d",&n))
{
int u,v,mark=0;
tot=0;
memset(head,-1,sizeof(head));
for(int i=1; i<=n; i++)
{
while(scanf("%d",&u)&&u!=0){
mark=0;
for(int j=head[i] ; j!=-1 ; j=edge[j].next) ///去重边
if(edge[j].to == u){
mark = 1;
break;
}
if(!mark) addedge(i,u);
}
}
solve(n);
}
return 0;
}
正确代码矩阵:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXV 110
#define min(a,b) (a>b?b:a)
#define max(a,b) (a>b?a:b) int n,map[MAXV][MAXV],outdegree[MAXV],indegree[MAXV];
int dfn[MAXV]; //第一次访问的步数
int low[MAXV]; //子树中最早的步数
int stap[MAXV],stop; //模拟栈
bool instack[MAXV]; //是否在栈中
int count; //记录连通分量的个数
int cnt; //记录搜索步数
int belong[MAXV]; //属于哪个连通分量 void init(){
count=stop=cnt=0;
memset(instack,false,sizeof(instack));
memset(map,0,sizeof(map));
memset(dfn,0,sizeof(dfn));
} void tarjan(int x){
int i;
dfn[x]=low[x]=++cnt;
stap[stop++]=x;
instack[x]=true;
for(i=1;i<=n;i++){
if(!map[x][i]) continue;
if(!dfn[i]){
tarjan(i);
low[x]=min(low[i],low[x]);
}else if(instack[i])
low[x]=min(dfn[i],low[x]);
//与x相连,但是i已经被访问过,且还在栈中
//用子树节点更新节点第一次出现的时间
} if(low[x]==dfn[x]){
count++;
while(1){
int tmp=stap[--stop];
belong[tmp]=count;
instack[tmp]=false;
if(tmp==x) break;
}
}
} void output(){
int i,j,inzero=0,outzero=0;
for(i=1;i<=n;i++){
indegree[i]=outdegree[i]=0;
}
for(i=1;i<=n;i++) //找连通分量入度与出度
for(j=1;j<=n;j++)
if(map[i][j] && belong[i]!=belong[j]){
indegree[belong[j]]++;
outdegree[belong[i]]++;
}
for(i=1;i<=count;i++){ //找入度与出度为0的点
if(!indegree[i]) inzero++;
if(!outdegree[i]) outzero++;
} if(count==1) //只有1个结点要特判
printf("1\n0\n");
else
printf("%d\n%d\n",inzero,max(inzero,outzero));
} int main(){
int i,a;
while(~scanf("%d",&n)){
init();
for(i=1;i<=n;i++){
while(scanf("%d",&a) && a) map[i][a]=1;
}
for(i=1;i<=n;i++)
if(!dfn[i]) tarjan(i);
output();
}
return 0;
}
正确代码邻接表
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MOD 100000
#define inf 1<<29
#define LL long long
#define MAXN 20010
#define MAXM = 50010
using namespace std;
struct Edge
{
int to,next;
bool cut;
} edge[MAXN]; int head[MAXN],tot;
int low[MAXN],DFN[MAXN],belong[MAXN];///belong 的值为1-block
int index,top,fenzhiNum;
int block ; ///强连通分量
bool inStack[MAXN];
int bridgeNum; ///桥的数目
int stack[MAXN];
int vis[MAXN];
int inans,outans;
int outdu[MAXN];
int indu[MAXN]; void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].cut = false;
head[u] = tot++ ;
}
void ini(){
index = block = top = fenzhiNum = 0;
inans = 0, outans = 0 ;
memset(DFN,0,sizeof(DFN));
memset(inStack,false,sizeof(inStack));
memset(vis,0,sizeof(vis));
memset(outdu,0,sizeof(outdu));
memset(indu,0,sizeof(indu));
}
void Tarjan(int u)
{
vis[u] = true;
int v;
low[u] = DFN[u] = ++index;
stack[top++] = u;
inStack[u] = true;
for(int i=head[u] ; i!=-1 ; i=edge[i].next)
{
v = edge[i].to;
//if( v == pre ) continue; ///因为是无向图,所以两条是双向的,所以只遍历一条就够了
if( !DFN[v] )
{
Tarjan(v );
if(low[u]>low[v])
low[u] = low[v];
if(low[v] > DFN[u] ){
bridgeNum++;
edge[i].cut = true;
//edge[i^1].cut = true; ///将两条双向边都设置为桥
} }
else if( inStack[v] && low[u] > DFN[v])
low[u] = DFN[v];
}
if(low[u] == DFN[u])
{
block++;
do
{
v=stack[--top]; ///清空当前强连通分量栈 必须清空
inStack[v] = false;
belong[v]=block; ///v节点都编号为block 也就是这是一个块
}
while(v!=u);
}
} void solve(int N)
{
ini();
for(int i=1;i<=N;i++)
if(!vis[i])
Tarjan(i);
for(int i=1; i<=N ; i++){ ///缩点
for(int j=head[i] ; j!=-1 ; j=edge[j].next)
if( belong[i]!=belong[ edge[j].to ] )
indu[ belong[ edge[j].to ] ]++,outdu[ belong[i] ]++ ;
}
for(int i=1;i<=block ;i++)
if(indu[i] == 0)
inans++;
for(int i=1;i<=block ;i++)
if(outdu[i] == 0)
outans++;
// printf("indu=%d,outdu=%d\n",inans,outans);
if(block == 1) printf("1\n0\n");
else printf("%d\n%d\n",inans,max(inans,outans));
//printf("%d\n",(ans+1)/2 );
} int main ()
{
int n,m;
while(~scanf("%d",&n))
{
int u,v,mark=0;
tot=0;
memset(head,-1,sizeof(head));
for(int i=1; i<=n; i++)
{
while(scanf("%d",&u)&&u!=0){
mark=0;
for(int j=head[i] ; j!=-1 ; j=edge[j].next) ///去重边
if(edge[j].to == u){
mark = 1;
break;
}
if(!mark) addedge(i,u);
}
}
solve(n);
}
return 0;
}
Network of Schools(强连通分量缩点(邻接表&矩阵))的更多相关文章
- POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)
Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...
- POJ1236 Network of Schools —— 强连通分量 + 缩点 + 入出度
题目链接:http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Tot ...
- Network of Schools(强连通分量+缩点) (问添加几个点最少点是所有点连接+添加最少边使图强连通)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13801 Accepted: 55 ...
- POJ 1236 Network of Schools (强连通分量缩点求度数)
题意: 求一个有向图中: (1)要选几个点才能把的点走遍 (2)要添加多少条边使得整个图强联通 分析: 对于问题1, 我们只要求出缩点后的图有多少个入度为0的scc就好, 因为有入度的scc可以从其他 ...
- POJ1236Network of Schools[强连通分量|缩点]
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16571 Accepted: 65 ...
- poj-1236.network of schools(强连通分量 + 图的入度出度)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 27121 Accepted: 10 ...
- [IOI1996] USACO Section 5.3 Network of Schools(强连通分量)
nocow上的题解很好. http://www.nocow.cn/index.php/USACO/schlnet 如何求强连通分量呢?对于此题,可以直接先用floyd,然后再判断. --------- ...
- POJ1236 Network of Schools (强连通分量,注意边界)
A number of schools are connected to a computer network. Agreements have been developed among those ...
- 【强连通分量缩点】poj 1236 Network of Schools
poj.org/problem?id=1236 [题意] 给定一个有向图,求: (1)至少要选几个顶点,才能做到从这些顶点出发,可以到达全部顶点 (2)至少要加多少条边,才能使得从任何一个顶点出发,都 ...
随机推荐
- 通过新浪ip地址库获得用户的省份、城市等信息
<script src="http://apps.bdimg.com/libs/jquery/1.11.3/jquery.min.js"></script> ...
- mybatis 中的稍微复杂些的sql语句
mybatis 中的稍微复杂些的sql语句: <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYP ...
- js下的sleep实现
function sleep(d){ for(var t = Date.now();Date.now() - t <= d;); } sleep(5000); //当前方法暂停5秒
- HBase(八): 表结构设计优化
在 HBase(六): HBase体系结构剖析(上) 介绍过,Hbase创建表时,只需指定表名和至少一个列族,基于HBase表结构的设计优化主要是基于列族级别的属性配置,如下图: 目录: BLOOMF ...
- Andaroid L新特性
1.Material Design”(材料设计)的全新设计理念,和Holo相比,Material Design更加色彩丰富,不像Holo那样灰暗 2.1)卡片风格(锁屏界面) 2)环动式设计 And ...
- CSS3 Media Queries(响应式布局可以让你定制不同的分辨率和设备)
点评:Media Queries这功能是非常强大的,他可以让你定制不同的分辨率和设备,并在不改变内容的情况下,让你制作的web页面在不同的分辨率和设备下都能显示正常,并且不会因此而丢失样式 Med ...
- 【linux】cut
vim test id name age score 101 paul 18 100 102 suan 11 99 103 peter 18 98 [root@andon ~]# cut -f 2 t ...
- Jquery中的offset()和position()
今天遇到这个偏移量的问题,特做此记录.以便日后查看. 先看看这两个方法的定义. offset(): 获取匹配元素在当前视口的相对偏移. 返回的对象包含两个整形属性:top 和 left.此方法只对可见 ...
- 剑指offer系列36----二叉搜索树的第k个节点
[题目]给定一颗二叉搜索树,请找出其中的第k大的结点. * 例如, 5 * / \ * 3 7 * / \ / \ * 2 4 6 8 中,按结点数值大小顺序第三个结点的值为4. 中序遍历:2 3 4 ...
- 【hibernate】之标注枚举类型@Enumerated(转载)
实体Entity中通过@Enumerated标注枚举类型,例如将CustomerEO实体中增加一个CustomerType类型的枚举型属性,标注实体后的代码如下所示. @Entity @Table(n ...