Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit。

经过了SimilarityJob的计算共生矩阵后,就可以开始下面一个过程了,这个过程主要是共生矩阵的乘法,要说这个共生矩阵的乘法是啥意思?我也不是很清楚,不清楚就看代码呗。

首先明确共生矩阵,即共生矩阵的输入文件(也是上面个SimilarityJob的输出文件):

similarityMatrix=================
{102={101:0.14201473202245876,106:0.14972506706560876,105:0.14328432723886902,104:0.12789210656028413,103:0.1975496259559987},
103={101:0.15548737703860027,106:0.1424339656566283,105:0.11208890297777215,104:0.14037600977966974,102:0.1975496259559987},
101={107:0.10275248635596666,106:0.1424339656566283,105:0.1158457425543559,104:0.16015261286229274,103:0.15548737703860027,102:0.14201473202245876},
106={101:0.1424339656566283,105:0.14201473202245876,104:0.18181818181818182,103:0.1424339656566283,102:0.14972506706560876},
107={105:0.2204812092115424,104:0.13472338607037426,101:0.10275248635596666},
104={107:0.13472338607037426,106:0.18181818181818182,105:0.16736577623297264,103:0.14037600977966974,102:0.12789210656028413,101:0.16015261286229274},
105={107:0.2204812092115424,106:0.14201473202245876,104:0.16736577623297264,103:0.11208890297777215,102:0.14328432723886902,101:0.1158457425543559}}

计算共生矩阵一共分为三个job,下面来分别看:

(1)prePartialMultiply1:
这个job的调用代码如下:

Job prePartialMultiply1 = prepareJob(
similarityMatrixPath, prePartialMultiplyPath1, SequenceFileInputFormat.class,
SimilarityMatrixRowWrapperMapper.class, VarIntWritable.class, VectorOrPrefWritable.class,
Reducer.class, VarIntWritable.class, VectorOrPrefWritable.class,
SequenceFileOutputFormat.class);

可以看到其实只是有一个mapper而已,reducer形同虚设,那就只看mapper吧

(1.1)mapper://SimilarityMatrixRowWrapperMapper

这个mapper同样很简单,只有一个map函数,如下:

(1.1.2)map:

protected void map(IntWritable key,
VectorWritable value,
Context context) throws IOException, InterruptedException {
Vector similarityMatrixRow = value.get();
/* remove self similarity */
similarityMatrixRow.set(key.get(), Double.NaN);
context.write(new VarIntWritable(key.get()), new VectorOrPrefWritable(similarityMatrixRow));
}

map中首先获得输入的value,就是和项目key不同的其他项目的相似度向量;然后是把自身的相似度设置为最大,在前面similarityJob中最后是把自身的相似度设置为0的,这里又设置为最大(前面设置为0,应该会在输出文件中就会相应的占少点空间,然后这里设置为最大值是为了后面计算的需要吧),然后就把key和value输出了,这里看到key和value都进行了类型转换,其中的key的类型变为了VarIntWritable应该只是为了速度的考虑吧(为啥之前不用?),而value的类型转为VectorOrPrefWritable应该是为了后面转换的考虑;

(1.2)reducer://Reducer

protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context
) throws IOException, InterruptedException {
for(VALUEIN value: values) {
context.write((KEYOUT) key, (VALUEOUT) value);
}
}

等于就是把mapper中的重新输出一遍而已;

所以他的输出应该类似于:

{102={106:0.1497250646352768,105:0.14328432083129883,104:0.12789210677146912,103:0.19754962623119354,102:NaN,101:0.14201472699642181},
103={106:0.14243397116661072,105:0.11208890378475189,104:0.140376016497612,103:NaN,102:0.19754962623119354,101:0.15548737347126007},
101={107:0.10275248438119888,106:0.14243397116661072,105:0.11584573984146118,104:0.1601526141166687,103:0.15548737347126007,102:0.14201472699642181,101:NaN},
106={106:NaN,105:0.14201472699642181,104:0.1818181872367859,103:0.14243397116661072,102:0.1497250646352768,101:0.14243397116661072},
107={101:0.10275248438119888,107:NaN,105:0.22048120200634003,104:0.13472338020801544}, 
104={107:0.13472338020801544,106:0.1818181872367859,105:0.16736577451229095,104:NaN,103:0.140376016497612,102:0.12789210677146912,101:0.1601526141166687}, 105={107:0.22048120200634003,106:0.14201472699642181,105:NaN,104:0.16736577451229095,103:0.11208890378475189,102:0.14328432083129883,101:0.11584573984146118}}

(2)prePartialMultiply2:

首先是其调用代码:

Job prePartialMultiply2 = prepareJob(new Path(prepPath, PreparePreferenceMatrixJob.USER_VECTORS),
prePartialMultiplyPath2, SequenceFileInputFormat.class, UserVectorSplitterMapper.class, VarIntWritable.class,
VectorOrPrefWritable.class, Reducer.class, VarIntWritable.class, VectorOrPrefWritable.class,
SequenceFileOutputFormat.class);
if (usersFile != null) {
prePartialMultiply2.getConfiguration().set(UserVectorSplitterMapper.USERS_FILE, usersFile);
}
prePartialMultiply2.getConfiguration().setInt(UserVectorSplitterMapper.MAX_PREFS_PER_USER_CONSIDERED,
maxPrefsPerUser);

这里看到同样的也只是有mapper在起作用而已,reducer同样的形同虚设;然后就是可以提供一个usersFile文件用于过滤不关心的用户,这个在这里没有设置,默认是null的,同样后面的maxPrefsPerUser也没有设置,所以也是默认值;

首先来明确一下这里的输入文件,这里的输入是第一个PreparePreferenceMatrixJob中的userVecotr的输出,根据前面的分析,得到文件如下:

{1={103:2.5,102:3.0,101:5.0},
2={101:2.0,104:2.0,103:5.0,102:2.5},
3={101:2.5,107:5.0,105:4.5,104:4.0},
4={101:5.0,106:4.0,104:4.5,103:3.0},
5={106:4.0,105:3.5,104:4.0,103:2.0,102:3.0,101:4.0}}

(2.1)mapper://UserVectorSplitterMapper

这个mapper是有setup和map函数的,下面一个个分析:

(2.1.1)setup:

protected void setup(Context context) throws IOException {
Configuration jobConf = context.getConfiguration();
maxPrefsPerUserConsidered = jobConf.getInt(MAX_PREFS_PER_USER_CONSIDERED, DEFAULT_MAX_PREFS_PER_USER_CONSIDERED);
String usersFilePathString = jobConf.get(USERS_FILE);
if (usersFilePathString != null) {
FSDataInputStream in = null;
try {
Path unqualifiedUsersFilePath = new Path(usersFilePathString);
FileSystem fs = FileSystem.get(unqualifiedUsersFilePath.toUri(), jobConf);
usersToRecommendFor = new FastIDSet();
Path usersFilePath = unqualifiedUsersFilePath.makeQualified(fs);
in = fs.open(usersFilePath);
for (String line : new FileLineIterable(in)) {
try {
usersToRecommendFor.add(Long.parseLong(line));
} catch (NumberFormatException nfe) {
log.warn("usersFile line ignored: {}", line);
}
}
} finally {
Closeables.closeQuietly(in);
}
}
}

汗,写了这么多代码,如果不用过滤用户的话,那么if里面的都没用了。不过,有时有一些特殊的需要(不关系其他用户,提高效率),这样写还是很不错的。其实看if里面做的事情也只是把文件中的user读出来,然后放在一个类似集合里面,然后在map中做过滤而已。除了if里面的代码,在setup中基本就没做其他事情了,因为那个maxPrefsPerUser没有设置,按默认的来,所以。。。

(2.1.2)map:

protected void map(VarLongWritable key,
VectorWritable value,
Context context) throws IOException, InterruptedException {
long userID = key.get();
if (usersToRecommendFor != null && !usersToRecommendFor.contains(userID)) {
return;
}
Vector userVector = maybePruneUserVector(value.get());
Iterator<Vector.Element> it = userVector.iterateNonZero();
VarIntWritable itemIndexWritable = new VarIntWritable();
VectorOrPrefWritable vectorOrPref = new VectorOrPrefWritable();
while (it.hasNext()) {
Vector.Element e = it.next();
itemIndexWritable.set(e.index());
vectorOrPref.set(userID, (float) e.get());
context.write(itemIndexWritable, vectorOrPref);
}
}

map的内容也不是很多,首先把userid读出来,然后在userToRecommendFor(就是在setup中读文件读到的user,这里没有而已)中过滤这个userid,如果没有就直接返回。接下来是对输入的value进行处理了,看下这个maybePruneUserVector函数是干嘛的:

private Vector maybePruneUserVector(Vector userVector) {
if (userVector.getNumNondefaultElements() <= maxPrefsPerUserConsidered) {
return userVector;
} float smallestLargeValue = findSmallestLargeValue(userVector); // "Blank out" small-sized prefs to reduce the amount of partial products
// generated later. They're not zeroed, but NaN-ed, so they come through
// and can be used to exclude these items from prefs.
Iterator<Vector.Element> it = userVector.iterateNonZero();
while (it.hasNext()) {
Vector.Element e = it.next();
float absValue = Math.abs((float) e.get());
if (absValue < smallestLargeValue) {
e.set(Float.NaN);
}
}
return userVector;
}

先看if条件判断,因为传入的vector最大的size也只是7(一共有7个项目),所以这里判断是true的,那么就直接返回了原来的vector了。但是现实中一般的项目数肯定是大于10的,所以,如果maxPrefsPerUser是按默认值的话,就会执行下面的代码,而不是直接返回原始向量,那么分析下吧。紧接着是一个findSmallestLargeValue函数:

private float findSmallestLargeValue(Vector userVector) {

    TopK<Float> topPrefValues = new TopK<Float>(maxPrefsPerUserConsidered, new Comparator<Float>() {
@Override
public int compare(Float one, Float two) {
return one.compareTo(two);
}
}); Iterator<Vector.Element> it = userVector.iterateNonZero();
while (it.hasNext()) {
float absValue = Math.abs((float) it.next().get());
topPrefValues.offer(absValue);
}
return topPrefValues.smallestGreat();
}

目测这个函数应该是输出最小的float值,做个测试吧:

package mahout.fansy.item;

import java.util.Comparator;
import java.util.Iterator; import org.apache.mahout.cf.taste.common.TopK;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector; import junit.framework.TestCase;
/*
* 测试findSmallestLargeValue方法;
*/
public class TestTopK extends TestCase {
private Vector v=null;
public void setup(){
v=new RandomAccessSparseVector(Integer.MAX_VALUE);
//{103:2.5,102:3.0,101:5.0}
v.set(101, 5.0);
v.set(102,3.0);
v.set(103,2.5);
} public void testTopK(){
this.setup();
TopK<Float> topPrefValues = new TopK<Float>(10, new Comparator<Float>() {
@Override
public int compare(Float one, Float two) {
return one.compareTo(two);
}
}); Iterator<Vector.Element> it = v.iterateNonZero();
while (it.hasNext()) {
float absValue = Math.abs((float) it.next().get());
topPrefValues.offer(absValue);
}
System.out.println("the value is:"+topPrefValues.smallestGreat());
}
}

由上面的输出结果2.5来看,的确是最小的值了;maybePruneUserVector中后面的代码就不是很理解了,既然都找出了最小值了,那么怎么还会有最小值呢?看他的英文解释好像是说要过滤一些什么输出似的,但是好像这样过滤不了吧?疑问???

如果真的是按照我想的那样的话,那么uservector还是输出原始值的;接下来的map中的代码和以前的分析中有些内容很相似,针对这样的输入<key,value>  -->  <userid,vector[itemid1:prefValue1,itemid2:prefValue2]> 输出为 <itemid1,vector[userid:prefValue1]>   、<itemid2,vecotr[userid:prefVlaue2]>,同样的,格式也是经过设置的。

(2.2)reducer://Reducer也就是把mapper的输出结果重复输出一遍,没有其他操作。

(3)partialMultiply:

其调用代码如下:

Job partialMultiply = prepareJob(
new Path(prePartialMultiplyPath1 + "," + prePartialMultiplyPath2), partialMultiplyPath,
SequenceFileInputFormat.class, Mapper.class, VarIntWritable.class, VectorOrPrefWritable.class,
ToVectorAndPrefReducer.class, VarIntWritable.class, VectorAndPrefsWritable.class,
SequenceFileOutputFormat.class);
setS3SafeCombinedInputPath(partialMultiply, getTempPath(), prePartialMultiplyPath1, prePartialMultiplyPath2);

先看下setS3SafeCombinedInputPath的操作是什么,

 public static void setS3SafeCombinedInputPath(Job job, Path referencePath, Path inputPathOne, Path inputPathTwo)
throws IOException {
FileSystem fs = FileSystem.get(referencePath.toUri(), job.getConfiguration());
FileInputFormat.setInputPaths(job, inputPathOne.makeQualified(fs), inputPathTwo.makeQualified(fs));
}

根据英文解释是说这样可以支持在Amazon S3上运行,因为MultipleInputs还没有投入使用。姑且认为这个是设置两个输入路径合法吧。

这个job有mapper也有reducer,额,好吧,这次该mapper形同虚设了,下面一个个分析:

先说下输入输入格式吧,输入数据有两种状态,(数据的类型是一样的):

其一,  <itemid, user:prefValue>; 其二,< itemid ,[itemid:prefValue,itemid:prefValue]>。

(3.1)mapper://Mapper,不解释。。。

(3.2)reducer://ToVectorAndPrefReducer

(3.2.1)reduce:

protected void reduce(VarIntWritable key,
Iterable<VectorOrPrefWritable> values,
Context context) throws IOException, InterruptedException { List<Long> userIDs = Lists.newArrayList();
List<Float> prefValues = Lists.newArrayList();
Vector similarityMatrixColumn = null;
for (VectorOrPrefWritable value : values) {
if (value.getVector() == null) {
// Then this is a user-pref value
userIDs.add(value.getUserID());
prefValues.add(value.getValue());
} else {
// Then this is the column vector
if (similarityMatrixColumn != null) {
throw new IllegalStateException("Found two similarity-matrix columns for item index " + key.get());
}
similarityMatrixColumn = value.getVector();
}
} if (similarityMatrixColumn == null) {
return;
} VectorAndPrefsWritable vectorAndPrefs = new VectorAndPrefsWritable(similarityMatrixColumn, userIDs, prefValues);
context.write(key, vectorAndPrefs);
}

reduce操作其实就等于是把相同的key的所有属性放到一个变量中,比如item是101的vector为 101={107:0.10275248635596666,106:0.1424339656566283,105:0.1158457425543559,104:0.16015261286229274,103:0.15548737703860027,102:0.14201473202245876},即similarityMatrixColumn变量;然后userIDs就是101={5:4.0,4:5.0,3:2.5,2:2.0,1:5.0}其中的userids={5,4,3,2,1},prefValues={4.0,5.0,2.5,2.0,5.0}.

测试输入的结果如下:

{102={106:0.1497250646352768,105:0.14328432083129883,104:0.12789210677146912,103:0.19754962623119354,102:NaN,101:0.14201472699642181}	[5, 1, 2]	[3.0, 3.0, 2.5],
103={106:0.14243397116661072,105:0.11208890378475189,104:0.140376016497612,103:NaN,102:0.19754962623119354,101:0.15548737347126007} [4, 1, 2, 5] [3.0, 2.5, 5.0, 2.0],
101={107:0.10275248438119888,106:0.14243397116661072,105:0.11584573984146118,104:0.1601526141166687,103:0.15548737347126007,102:0.14201472699642181,101:NaN} [5, 1, 4, 2, 3] [4.0, 5.0, 5.0, 2.0, 2.5],
106={106:NaN,105:0.14201472699642181,104:0.1818181872367859,103:0.14243397116661072,102:0.1497250646352768,101:0.14243397116661072} [4, 5] [4.0, 4.0], 
107={101:0.10275248438119888,107:NaN,105:0.22048120200634003,104:0.13472338020801544}	[3]	[5.0],
104={107:0.13472338020801544,106:0.1818181872367859,105:0.16736577451229095,104:NaN,103:0.140376016497612,102:0.12789210677146912,101:0.1601526141166687} [4, 2, 5, 3] [4.5, 2.0, 4.0, 4.0],
105={107:0.22048120200634003,106:0.14201472699642181,105:NaN,104:0.16736577451229095,103:0.11208890378475189,102:0.14328432083129883,101:0.11584573984146118} [5, 3] [3.5, 4.5]}

从上面的文件读取结果来看,分析思路是正确的。

分享,成长,快乐

转载请注明blog地址:http://blog.csdn.net/fansy1990

mahout算法源码分析之Itembased Collaborative Filtering(四)共生矩阵乘法的更多相关文章

  1. mahout算法源码分析之Itembased Collaborative Filtering(二)RowSimilarityJob

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 本篇开始之前先来验证前篇blog的分析结果,编写下面的测试文件来进行对上篇三个job的输出进行读取: p ...

  2. mahout算法源码分析之Itembased Collaborative Filtering(三)RowSimilarityJob验证

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 本篇分析上篇的分析是否正确,主要是编写上篇输出文件的读取以及添加log信息打印相关变量. 首先,编写下面 ...

  3. mahout算法源码分析之Collaborative Filtering with ALS-WR 并行思路

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算 ...

  4. mahout算法源码分析之Collaborative Filtering with ALS-WR (四)评价和推荐

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with AL ...

  5. mahout算法源码分析之Collaborative Filtering with ALS-WR拓展篇

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with AL ...

  6. diff.js 列表对比算法 源码分析

    diff.js列表对比算法 源码分析 npm上的代码可以查看 (https://www.npmjs.com/package/list-diff2) 源码如下: /** * * @param {Arra ...

  7. 【Zookeeper】源码分析之请求处理链(四)

    一.前言 前面分析了SyncReqeustProcessor,接着分析请求处理链中最后的一个处理器FinalRequestProcessor. 二.FinalRequestProcessor源码分析 ...

  8. 【Zookeeper】源码分析之请求处理链(四)之FinalRequestProcessor

    一.前言 前面分析了SyncReqeustProcessor,接着分析请求处理链中最后的一个处理器FinalRequestProcessor. 二.FinalRequestProcessor源码分析 ...

  9. 精尽MyBatis源码分析 - SQL执行过程(四)之延迟加载

    该系列文档是本人在学习 Mybatis 的源码过程中总结下来的,可能对读者不太友好,请结合我的源码注释(Mybatis源码分析 GitHub 地址.Mybatis-Spring 源码分析 GitHub ...

随机推荐

  1. C的结构体使用

    C的结构体演示 #include <stdio.h> struct A //建立结构体A { char *name; int s1; struct A *next; }; void mai ...

  2. Java自动装箱拆箱

    一.装箱.拆箱定义 如果一个int型量被传递到需要一个Integer对象的地方,那么,编译器将在幕后插入一个对Integer构造方法的调用,这就叫做自动装箱.而如果一个Integer对象被放到需要in ...

  3. PHPMailer邮件类使用错误分析

    PHPMailer配置清单如下: require_once ‘class.phpmailer.php‘; $receiver = ”; $mail =  new PHPMailer ( ); $mai ...

  4. tomcat Manger App

    转发链接,嘿嘿http://simeon.blog.51cto.com/18680/58877

  5. distinguish and differentiate

    According to Cambridge Dictionary distinguish:to recognize or understand the difference between two ...

  6. linux清空日志文件内容 (转)

    随着系统运行时间越来越长,日志文件的大小也会随之变得越来越大.如果长期让这些历史日志保存在系统中,将会占用大量的磁盘空间.用户可以直接把这些日志文件删除,但删除日志文件可能会造成一些意想不到的后果.为 ...

  7. mysql优化SQL语句的一般步骤及常用方法

    一.优化SQL语句的一般步骤 1. 通过show status命令了解各种SQL的执行频率 mysqladmin extended-status 或: show [session|global]sta ...

  8. PyPI镜像网站

    镜像列表:http://www.pypi-mirrors.org/ 清华镜像:http://e.pypi.python.org/

  9. Java之--Java基础知识

    一.软件基础知识 1.软件:一系列按特定顺序组织的计算机数据和指令的集合. 1)系统软件:DOS.windows.linux. 2)应用软件:QQ.扫雷等. 2.软件开发就是制作软件. 3.人与计算机 ...

  10. org.unsaved transient instance - save the transient instance before flushing: bug解决方案

    最近开发和学习过程中,遇到很多零碎的知识点,在此简单地记录下: 1.遇如下bug: org.unsaved transient instance - save the transient instan ...