MongoDB 聚合 (转) 仅限于C++开发
MongoDB除了基本的查询功能,还提供了很多强大的聚合工具,其中简单的可计算集合中的文档个数,
复杂的可利用MapReduce做复杂数据分析.
1.count
count返回集合中的文档数量
db.refactor.count()
不管集合有多大,都能很快的返回文档数量.
可以传递查询,MongoDB会计算查询结果的数量
db.refactor.count({"username":"refactor"})
但是增加查询条件会使count变慢.
2.distinct
distinct用来找出给定键的所有不同值.使用时必须指定集合和键.
如:
db.runCommand({"distinct":"refactor","key":"username"})
3.group
group先选定分组所依据的键,MongoDB将会将集合依据选定键值的不同分成若干组.然后可以通过聚合每一组内的文档,
产生一个结果文档.
如:
db.runCommand(
{
"group":
{
"ns":"refactor",
"key":{"username":true},
"initial":{"count":0},
"$reduce":function(doc,prev)
{
prev.count++;
},
"condition":{"age":{"$gt":40}}
}
}
)
"ns":"refactor",
指定要进行分组的集合
"key":{"username":true},
指定文档分组的依据,这里是username键,所有username键的值相等的被划分到一组,true为返回键username的值
"initial":{"count":0},
每一组reduce函数调用的初始个数.每一组的所有成员都会使用这个累加器.
"$reduce":function(doc,prev){...}
每个文档都对应的调用一次.系统会传递两个参数:当前文档和累加器文档.
"condition":{"age":{"$gt":40}}
这个age的值大于40的条件
4.使用完成器
完成器用于精简从数据库传到用户的数据.group命令的输出一定要能放在单个数据库相应中.
"finalize"附带一个函数,在数组结果传递到客户端之前被调用一次.
db.runCommand(
{
"group":
{
"ns":"refactor",
"key":{"username":true},
"initial":{"count":0},
"$reduce":function(doc,prev)
{
prev.count++;
},
"finalize":function(doc)
{
doc.num=doc.count;
delete doc.count;
}
}
}
)
finalize能修改传递的参数也能返回新值.
5.将数组作为键使用
有些时候分组所依据的条件很复杂,不仅是一个键.比如要使用group计算每个类别有多篇博客文章.由于有很多作者,
给文章分类时可能不规律的使用了大小写.所以,如果要是按类别名来分组,最后"MongoDB"和"mongodb"就是不同的组.
为了消除这种大小写的影响,就要定义一个函数来确定文档所依据的键.
定义分组要用到$keyf
db.runCommand(
{
"group":
{
"ns":"refactor",
"$keyf":function(doc){return {"username":doc.username.toLowerCase()}},
"initial":{"count":0},
"$reduce":function(doc,prev)
{
prev.count++;
}
}
}
)
6.MapReduce
count,distinct,group能做的事情MapReduce都能做.它是一个可以轻松并行化到多个服务器的聚合方法.它会
拆分问题,再将各个部分发送到不同机器上,让每台机器完成一部分.当所有机器都完成时候,再把结果汇集起来形成
最终完整的结果.
MapReduce需要几个步骤:
1.映射,将操作映射到集合中的每个文档.这个操作要么什么都不做,要么 产生一个键和n个值.
2.洗牌,按照键分组,并将产生的键值组成列表放到对应键中.
3.化简,把列表中的值 化简 成一个单值,这个值被返回.
4.重新洗牌,直到每个键的列表只有一个值为止,这个值就是最终结果.
MapReduce的速度比group慢,group也很慢.在应用程序中,最好不要用MapReduce,可以在后台运行MapReduce
创建一个保存结果的集合,可以对这个集合进行实时查询.
找出集合中的所有键
MongoDB没有模式,所以并不知晓每个文档有多少个键.通常找到集合的所有键的做好方式是用MapReduce.
在映射阶段,想得到文档中的每个键.map函数使用emit 返回要处理的值.emit会给MapReduce一个键和一个值.
这里用emit将文档某个键的记数(count)返回({count:1}).我们为每个键单独记数,所以为文档中的每一个键调用一次emit,
this是当前文档的引用:
map=function(){
for(var key in this)
{
emit(key,{count:1})
}
};
这样返回了许许多多的{count:1}文档,每一个都与集合中的一个键相关.这种有一个或多个{count:1}文档组成的数组,
会传递给reduce函数.reduce函数有两个参数,一个是key,也就是emit返回的第一个值,另一个参数是数组,由一个或者多个
对应键的{count:1}文档组成.
reduce=function(key,emits){
total=0;
for(var i in emits){
total+=emits[i].count;
}
return {count:total};
}
reduce要能被反复被调用,不论是映射环节还是前一个化简环节.reduce返回的文档必须能作为reduce的
第二个参数的一个元素.如x键映射到了3个文档{"count":1,id:1},{"count":1,id:2},{"count":1,id:3}
其中id键用于区别.MongoDB可能这样调用reduce:
>r1=reduce("x",[{"count":1,id:1},{"count":1,id:2}])
{count:2}
>r2=reduce("x",[{"count":1,id:3}])
{count:1}
>reduce("x",[r1,r2])
{count:3}
reduce应该能处理emit文档和其他reduce结果的各种集合.
如:
mr=db.runCommand(
{
"mapreduce":"refactor",
"map":map,
"reduce":reduce,
"out":{inline:1}
}
)
或:
db.refactor.mapReduce(map,reduce,{out:{inline:1}})
"timeMillis" : 5,//操作花费的时间
"counts" : {
"input" : 10,//发往到map函数的文档个数
"emit" : 40,//在map函数中emit被调用的次数
"reduce" : 4,//在map函数中reduce被调用的次数
"output" : 4//结果集合中创建的文档数量.
},
1.mapreduce是根据map函数里调用的emit函数的第一个参数来进行分组的
2.仅当根据分组键分组后一个键匹配多个文档,才会将key和文档集合交由reduce函数处理
注意MongoDB 1.8版本以上,必须指明 out 参数
否则会报如下错误:
"assertion" : "'out' has to be a string or an object",
"assertionCode" : 13606,
MapReduce中的其他键
mapreduce,map,reduce这三个键是必须的,MapReduce命令还有其他的可选键
finalize:函数
将reduce的结果发送给这个键,这是处理过程的最后一步
keeptemp:布尔值
连接关闭时,临时结果是否保存
output:字符串
结果集合的名字,设定该项则隐含着keeptemp:true
query:文档
会在发往map函数前,先用指定条件过滤文档
sort:文档
会在发往map函数前先给文档排序
limit:整数
发往map函数文档的最大数量
scope:文档
javascript代码中要用到的变量
verbose:布尔值
是否产生更加信息的服务器日志
MongoDB 聚合 (转) 仅限于C++开发的更多相关文章
- MongoDB 查询 (转) 仅限于C++开发
1.find MongoDB使用find来进行查询.查询就是返回一个集合中文档的子集,子集合的范围从0个文档到整个集合.find的第一个参数 决定了要返回哪些文档.其形式也是一个文档,说明要查询的细节 ...
- MongoDB 聚合分组取第一条记录的案例及实现
关键字:MongoDB: aggregate:forEach 今天开发同学向我们提了一个紧急的需求,从集合mt_resources_access_log中,根据字段refererDomain分组,取分 ...
- SWF 文件不能本地访问 只有仅限于文件系统的 SWF 文件
http://blog.163.com/vituk93@126/blog/static/1709580342012512112757505/ SWF 文件不能被本地访问 不能访问本地 只有仅限于文件系 ...
- MongoDB 聚合管道(Aggregation Pipeline)
管道概念 POSIX多线程的使用方式中, 有一种很重要的方式-----流水线(亦称为"管道")方式,"数据元素"流串行地被一组线程按顺序执行.它的使用架构可参考 ...
- Mongodb学习笔记四(Mongodb聚合函数)
第四章 Mongodb聚合函数 插入 测试数据 ;j<;j++){ for(var i=1;i<3;i++){ var person={ Name:"jack"+i, ...
- ORA-00257: 归档程序错误。在释放之前仅限于内部连接
今天发现oracle数据库连不上,报错:ORA-00257: 归档程序错误.在释放之前仅限于内部连接 马上联想到可能是空间满了,一看磁盘目录,果然. 解决方法如下: 1:查看归档日志目录. 登陆账号后 ...
- mongodb MongoDB 聚合 group
MongoDB 聚合 MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果.有点类似sql语句中的 count(*). 基本语法为:db.col ...
- MongoDB 聚合
聚合操作过程中的数据记录和计算结果返回.聚合操作分组值从多个文档,并可以执行各种操作,分组数据返回单个结果.在SQL COUNT(*)和group by 相当于MongoDB的聚集. aggregat ...
- Struts 2.x仍然明显落后于时代。 Struts 2.x这一类老牌Web MVC开发框架仅能用于开发瘦客户端应用,无法用来开发对于交互体验要求更高的应用。
后来我在工作中陆续使用过Struts 1.x和Struts 2.x.我曾经把一个开源的基于Struts 1.x的自助式广告联盟应用移植到Spring MVC,还基于Struts 2.x做过网站开发.S ...
随机推荐
- git reset 理解
http://www.open-open.com/lib/view/open1397013992747.html 一般在工作中用的比较多的是: git reset --hard <commitI ...
- x^y=(x&~y)|(~x&y)证明
我见过最棒的证明是文氏图:(首先要知道二元布尔代数是集合的特殊情况,所以把X和Y当作两个集合,结论成立,那么在二元布尔代数里面也成立.)左边的圈是X,右边的圈是Y.如果是OR 也就是取或,中间的白色的 ...
- shell如何在指定文件的指定位置后面添加内容
最近工作中遇到一个问题,想在某个文件的指定位置后面添加一个标志位,要求在shell脚本里实现. 问题说明: 想在sys_config.fex文本的某个字符串后面添加一个flag 例如:sys_conf ...
- eclipse 新建 maven 项目 步骤(初级入门新手)
安装 maven(百度) 和在eclipse 中svn(上一篇) 修改 maven 本地仓库 eclipse 属性 maven--> installations-->添加新的 自定义安装的 ...
- java集合框架之java HashMap代码解析
java集合框架之java HashMap代码解析 文章Java集合框架综述后,具体集合类的代码,首先以既熟悉又陌生的HashMap开始. 源自http://www.codeceo.com/arti ...
- postgresql 视图
一.创建视图 create or replace view vw_users as select * from users; 二.通过定义规则来更新视图 create rule vw_users_up ...
- sql server多表数据批量更新
update wset w.TagCount=x.TagCountfrom (select ItemID,COUNT(*) as TagCount from r where IsValid=1 gro ...
- Shell基础:变量类型 & 运算符
Shell变量 Shell支持三种类型的变量 用户自定义变量:用户自定义的变量,变量名以英文字母或下划线开头,区分大小写. 位置变量:根据位置传递参数给脚本的变量,默认支持9个位置变量 $1,$2,$ ...
- IP的正则表达式
首先分析IP地址0-255: 0-9: [0-9]或 \d表示数字 10-99: [1-9]\d 100-199: 1/d{2} 200-249: 2[0-4]\d 250-25 ...
- javaSE之如何将一个文档显示出来(,txt,.doc,.....)
package DEMO ; import java.io.File; import java.io.FileInputStream; import java.io.IOException; impo ...