In this chapter we will study the family of linear predictors, one of the most useful families of hypothesis classes. Many learning algorithms that are being widely used in practice rely on linear predictors, first and foremost because of the ability to learn them efficiently in many cases. In addition, linear predictors are intuitive, are easy to interpret, and fit the data reasonably well in many natural learning problems.

We will introduce several hypothesis classes belonging to this family – halfspaces, linear regression predictors, and logistic regression predictors – and present relevant learning algorithms: linear programming and the Perceptron algorithm for the class of halfspaces and the Least Squares algorithm for linear regression. This chapter is focused on learning linear predictors using the ERM approach; however, in later chapters we will see alternative paradigms for leaning these hypothesis classes.

First, we define the class of affine functions as

where

It will be convenient also to use the notation

which reads as follows:

The different hypothesis classes of linear predictors are compositions of a function

It may be more convenient to incorporate

It follows that each affine function in

Linear Predictors的更多相关文章

  1. kaggle入门2——改进特征

    1:改进我们的特征 在上一个任务中,我们完成了我们在Kaggle上一个机器学习比赛的第一个比赛提交泰坦尼克号:灾难中的机器学习. 可是我们提交的分数并不是非常高.有三种主要的方法可以让我们能够提高他: ...

  2. A Statistical View of Deep Learning (I): Recursive GLMs

    A Statistical View of Deep Learning (I): Recursive GLMs Deep learningand the use of deep neural netw ...

  3. py-faster-rcnn 训练参数修改(转)

    faster rcnn默认有三种网络模型 ZF(小).VGG_CNN_M_1024(中).VGG16 (大) 训练图片大小为500*500,类别数1. 一. 修改VGG_CNN_M_1024模型配置文 ...

  4. Improving your submission -- Kaggle Competitions

    1: Improving Our Features In the last mission, we made our first submission to Titanic: Machine Lear ...

  5. py-faster-rcnn代码阅读2-config.py

    简介  该文件指定了用于fast rcnn训练的默认config选项,不能随意更改,如需更改,应当用yaml再写一个config_file,然后使用cfg_from_file(filename)导入以 ...

  6. kaggle 泰坦尼克号问题总结

    学习了机器学习这么久,第一次真正用机器学习中的方法解决一个实际问题,一步步探索,虽然最后结果不是很准确,仅仅达到了0.78647,但是真是收获很多,为了防止以后我的记忆虫上脑,我决定还是记录下来好了. ...

  7. 使用scikit-learn进行建模预测和评估操作_泰坦尼克号获救预测

    # coding: utf-8 # In[142]: import pandas as pd import numpy as np import matplotlib.pyplot as plt # ...

  8. Kaggle入门——泰坦尼克号生还者预测

    前言 这个是Kaggle比赛中泰坦尼克号生存率的分析.强烈建议在做这个比赛的时候,再看一遍电源<泰坦尼克号>,可能会给你一些启发,比如妇女儿童先上船等.所以是否获救其实并非随机,而是基于一 ...

  9. 深度学习论文翻译解析(八):Rich feature hierarchies for accurate object detection and semantic segmentation

    论文标题:Rich feature hierarchies for accurate object detection and semantic segmentation 标题翻译:丰富的特征层次结构 ...

随机推荐

  1. 纯css3代码写下拉菜单效果

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. HTML5自学笔记[ 24 ]canvas绘图之星空草地

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  3. Python3学习笔记(urllib模块的使用)转http://www.cnblogs.com/Lands-ljk/p/5447127.html

    Python3学习笔记(urllib模块的使用)   1.基本方法 urllib.request.urlopen(url, data=None, [timeout, ]*, cafile=None,  ...

  4. JavaWeb基础: 会话技术简介

    会话技术 用户使用Web应用的过程实际是调用了一系列的Servlet来组合处理请求,从而完成整个业务流.不同Servlet组合起来为用户服务的时候就会遇到一个数据共享和传输的问题,如何让多个Servl ...

  5. 初学java之异常类

    //异常类 package st; public class example_1 { public static void main(String args[]) { int n=0,m=0,t=10 ...

  6. tsne降维可视化

    Python代码:准备训练样本的数据和标签:train_X4000.txt.train_y4000.txt 放于tsne.py当前目录.(具体t-SNE – Laurens van der Maate ...

  7. express+nodecoffee写passport登录验证实例(二)

    二:实现登录认证 passport官网文档:  http://passportjs.org/guide/ passport验证使用一种被称为“策略”的方式来验证请求,策略支持3种类型的验证:用户名密码 ...

  8. python——使用readline库实现tab自动补全

    Input History readline tracks the input history automatically. There are two different sets of funct ...

  9. windows下捕获dump

         一般要捕获异常只需要两个函数:SetUnhandledExceptionFilter截获异常:MiniDumpWriteDump写dump文件.但是由于CRT函数可能会在内部调用SetUnh ...

  10. 在eclipse导入项目的步骤【转】

    1. Import 2. Next 3. 确定  选中copy projects into workspace    Finish 这样项目就导入进来了. 4.导入jar包 Configure Bui ...