UVa 10006 - Carmichael Numbers
UVa 10006 - Carmichael Numbers
An important topic nowadays in computer science is cryptography. Some people even think that cryptography is the only important field
in computer science, and that life would not matter at all without cryptography.
Alvaro is one of such persons, and is designing a set of cryptographic procedures for cooking paella. ´
Some of the cryptographic algorithms he is implementing make use of big prime numbers. However,checking if a big number is prime is not so easy. An exhaustive approach can require the division of the number by all the prime numbers smaller or equal than its
square root. For big numbers, the amount of time and storage needed for such operations would certainly ruin the paella.
However, some probabilistic tests exist that offer high confidence at low cost. One of them is the Fermat test.
Let a be a random number between 2 and n−1 (being n the number whose primality we are testing).Then, n is probably prime if the following equation holds: a^n mod n = a
If a number passes the Fermat test several times then it is prime with a high probability.Unfortunately, there are bad news. Some numbers that are not prime still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael
numbers.In this problem you are asked to write a program to test if a given number is a Carmichael number.Hopefully, the teams that fulfill the task will one day be able to taste a delicious portion of encrypted paella. As a side note, we need to mention that,
according to Alvaro, the main advantage of encrypted ´paella over conventional paella is that nobody but you knows what you are eating.
Input
The input will consist of a series of lines, each containing a small positive number n (2 < n < 65000).A number n = 0 will mark the end of the input, and must not be processed.
Output
For each number in the input, you have to print if it is a Carmichael number or not, as shown in the sample output.
Sample Input
1729
17
561
1109
431
0
Sample Output
The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.
迷失在幽谷中的鸟儿,独自飞翔在这偌大的天地间,却不知自己该飞往何方……
#include <iostream>
using namespace std;
int prime[65000];
long long powmod(int a,int n,int m)
{
if (n==1)return a%m;
long long x=powmod(a,n/2,m);
x=(x*x)%m;
if (n%2)x=(x*a)%m;
return x;
}
int tests(int n)
{
for (int i=2; i<n; ++i)
if (powmod(i,n,n)!=i)
return 0;
return 1;
}
int main()
{
for (int i =0; i<65000; ++i)
prime[i]=1;
for (int i=2; i<65000; ++i)
if (prime[i])
for (int j=2*i; j<65000; j+=i)
prime[j]=0;
int n;
while(cin>>n&&n)
if(!prime[n]&&tests(n))
cout<< "The number "<<n<<" is a Carmichael number."<<endl;
else cout<<n<<" is normal."<<endl;
return 0;
}
UVa 10006 - Carmichael Numbers的更多相关文章
- UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
Carmichael Numbers An important topic nowadays in computer science is cryptography. Some people e ...
- Uva 10006 Carmichael Numbers (快速幂)
题意:给你一个数,让你判断是否是非素数,同时a^n%n==a (其中 a 的范围为 2~n-1) 思路:先判断是不是非素数,然后利用快速幂对每个a进行判断 代码: #include <iostr ...
- 【UVA - 10006 】Carmichael Numbers (快速幂+素数筛法)
-->Carmichael Numbers Descriptions: 题目很长,基本没用,大致题意如下 给定一个数n,n是合数且对于任意的1 < a < n都有a的n次方模n等于 ...
- UVA10006 - Carmichael Numbers
题目链接:UVA10006 本来想直接打素数表,然后根据素数表来判断,结果一直超时,后来把素数表去掉,再在for循环中加判断才勉强过了. Some numbers that are not prime ...
- Carmichael Numbers - PC110702
欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10006.html 原创:Carm ...
- Uva - 12050 Palindrome Numbers【数论】
题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...
- UVA.136 Ugly Numbers (优先队列)
UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...
- UVA - 13022 Sheldon Numbers(位运算)
UVA - 13022 Sheldon Numbers 二进制形式满足ABA,ABAB数的个数(A为一定长度的1,B为一定长度的0). 其实就是寻找在二进制中满足所有的1串具有相同的长度,所有的0串也 ...
- UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂)
UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂) 题目链接 题目大意:假设有一个合数.然后它满足随意大于1小于n的整数a, 满足a^n%n = a;这种合数叫做Ca ...
随机推荐
- Navicat Premium 11.0.19中文破解版 安装
一.navicat-premium简介 它是一款可连接多种数据库的软件,具体参见官网介绍:http://www.navicat.com.cn/products/navicat-premium 二.下载 ...
- Mrt render
mutil render target Pixel shder输出一个结构体 Out.f4Color Out.f4Normal 这步在渲染物体的shader里 在application setcolo ...
- 项目分析(map复习)
有段时间没看map里面的东西了,刚才看发现功能上增加了一些,在来复习了一次流程初始化每个map建立线程,这个线程有两个功能,1.处理GS发过来的包 2.驱动map里面的定时器GS发过来的包是存在m_g ...
- Lessons learned from manually classifying CIFAR-10
Lessons learned from manually classifying CIFAR-10 Apr 27, 2011 CIFAR-10 Note, this post is from 201 ...
- 将apk安装包安装在Android真机或者模拟器
例子如下: 一.准备 打开MAC PC上的Android模拟器方法:打开eclipse-—>window->Android Virtual Device Manager 如果是安装在真机上 ...
- asp.net各种类型视频播放代码(全)
1.avi格式 代码片断如下: <object id="video" width="400" height="200" border= ...
- BZOJ1191: [HNOI2006]超级英雄Hero
这题标解是改一下匈牙利算法,显然,像我这种从不用匈牙利的人,会找个办法用网络流… 具体做法是这样,二分最后的答案ans,然后对前ans个问题建图跑网络流,看最大流能不能到ans. /********* ...
- 【译】 沙箱中的间谍 - 可行的 JavaScript 高速缓存区攻击
王龑 - MAY 27, 2015 原文连接 The Spy in the Sandbox – Practical Cache Attacks in Javascript 相关论文可在 https:/ ...
- iOS KVC,KVO
链接(写得不错,着重kvc):http://www.cocoachina.com/industry/20140224/7866.html 链接:http://www.cnblogs.com/kensh ...
- D&F学数据结构系列——B树(B-树和B+树)介绍
B树 定义:一棵B树T是具有如下性质的有根树: 1)每个节点X有以下域: a)n[x],当前存储在X节点中的关键字数, b)n[x]个关键字本身,以非降序存放,因此key1[x]<=key2[x ...