Apple Tree
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 16180   Accepted: 4836

Description

There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. Kaka likes apple very much, so he has been carefully nurturing the big apple tree.

The tree has N forks which are connected by branches. Kaka numbers the forks by 1 to N and the root is always numbered by 1. Apples will grow on the forks and two apple won't grow on the same fork. kaka wants to know how many apples are there in a sub-tree, for his study of the produce ability of the apple tree.

The trouble is that a new apple may grow on an empty fork some time and kaka may pick an apple from the tree for his dessert. Can you help kaka?

Input

The first line contains an integer N (N ≤ 100,000) , which is the number of the forks in the tree.
The following N - 1 lines each contain two integers u and v, which means fork u and fork v are connected by a branch.
The next line contains an integer M (M ≤ 100,000).
The following M lines each contain a message which is either
"C x" which means the existence of the apple on fork x has been changed. i.e. if there is an apple on the fork, then Kaka pick it; otherwise a new apple has grown on the empty fork.
or
"Q x" which means an inquiry for the number of apples in the sub-tree above the fork x, including the apple (if exists) on the fork x
Note the tree is full of apples at the beginning

Output

For every inquiry, output the correspond answer per line.

Sample Input

3
1 2
1 3
3
Q 1
C 2
Q 1

Sample Output

3
2
题目大意级是说,给你一颗树,最初每个节点上都有一个苹果,有两种操作:修改(即修改某一个节点,修改时这一个节点苹果从有到无,或从无到有)和查询(查询某一个节点他的子树上有多少个苹果)。
由于此题数据比较大(N<=10^5),而且不是标准的二叉树,所以这里我们队每一个节点重新编号,另外为每一个节点赋一个左值和一个右值,表示这个节点的管辖范围。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAv8AAAEBCAIAAABg6V2BAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACajSURBVHhe7d0/rutGtsXhHsgL3yicdNoDMRx4Hk5u1GN4gQGnHXgAxgWcdGTAUcOBYcDoxIaDBm7Qgd8+p5YoapGU+KdIVrF+H1bgq10SyWJR2kfSOf7LnwAAAC2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+wEAAG2h+9nV71/97Z9/fc/n33zSbQAA4FR0Pzv45dfPb01PF7ofAAAKQfezA7ofVIw3LAFcH93PDt66nx+//iX+69PXX/JCghrQsgNoCd3Pruh+UAm6H2AHv/3P//ajW1EAup9d0f2gErxhCWRlfU8/GoFT0f3sihcSVIdFC2xl7c4wGofz0P3sihcSVCfbouXpHm2ylT8VjcZJ6H52RfeD6mRYtPYs349GAGfa8RcbbcE/j+6DM9D97IruB9XZumjt+X0YjQMOdshX+221P4/ugzPQ/eyK7gfV2bRo7cl9KhoNHGn/7sfW+ZzonmfoJkH/bgzdz66WvZCUc1WgYeu7H1vAz6P7AIfZ/xcbh4vcbhkm3fF46fC76NaW0P3sau41ZtdDPxoBHITuB5dH90P3Q/ezi/tX6kby5a8/a5jYxTCMxgFHWPnCYIt2TnRP4Gh0P3Q/dD+7WND92JUwFY0Gdpen+xneMky6I3C4g7qfOdE9D5cOv4tubQndzx7mdj92GTyP7gPsYtkblkPD5Wq3DJPuCByu4u7n529+vF+Yb/npoyrLPD7IW1RoBt3PmewyeB7dB9gF3Q/asVf3E2yRP4/uM9foRZq+x73M4EHeoloz6H5OY5fBnOieQH6Zu5850T2Bo9XY/UxdoXQ/K9H9nGZ4Gdgtw6Q7AgWytTonuidwtB27n2Dr/El0hxk+fri3Kf19/viB7mclup/TDC8Du2WYdEegTLZcn0f3AU5Qyns/Ed3tud7facyyw+mhLKo1g+7nNMNrwG4ZJt0RKJMt1+fRfYATVPat5/s3nWd8Bj2HHu0xqjWD7uc0dg3Mie4JlMpW7JPoDsBxtn657Tlb4aMZHZbu/kT3sdd7r9Y/imy/8BVRrRl0P6exC2BOdE+gSLZcX0Z3Aw5ydPejwoANi6gw7v5O1VffDP9XZYu/9/N494doRBvoft7YCkhRbU92ATyP7gMUyZbrnOiewEF27H5sbUdUGGMjIyqMu3c/41m45373XjSiDXQ/Zy4FuwCeR/cBymNrdTSjw9LdgarZqo6oMM3GR1QY0e9+7u/09H4LbNnbP7d7jUQj2kD3c/JSsAvgSXQHoDy2ViMqDNiwiApAnWw9p6j2lN0looKb+o5291YW3c8adD/VvPcT0d2AktgqjagwxkZGVADqZOs5osIrdq+ICgPd73w9dD/3X4On+1mD7ue0pWDrfk50T6AYtkQjKkyz8REVgNrYSo6oMI/dN6KC+f6n26vS6Cdfy37z63avkWhEG+h+zlkKtuJHMzos3R0ogS3OFNWesrtEVADqYWs4osIS9ggRFR48++Lz0j9ZZHe3aFAD6H5K6X5UGLBhERWAs9nKjKjwit0rogJQCVvAKaotYY8QUcFN/MLah99Vn8fuPnpLI+h+Tuh+bK1HVBhjIyMqAKeyZRlRYR67b0QFoAa2eiMqLGePE1FhoP9/+1r6dZ+kd/e3jN7SCLqfo7sfW+URFabZ+IgKwElsQUZUWMIeIaICUDZbtxEV1sr7aE8MX+OGtzSC7ufQ7seWeIpqT9ldIioAh7OlmKLaEvYIERWAgtmijaiwgT1gRIXchq9xw1saQfdzcvejwit2r4gKwOFsKUZUWM4eJ6ICUCRbrimqbWOPGVEhq+Fr3PCWRtD9HNf92MqOqDCP3TeiAnAgW4QRFdbK+2jAfmytpqi2mT1sRIWshq9xw1saQfdzUPdjyzqiwhL2CBEVgEPY8ouosIE9YEQFoDC2UCMqZGIPHlEhE3uBi4zenm68PLqfI7ofW9Apqi1hjxBRAdifrb0U1baxx4yoABTDlmhEhaxsExEVcrAXuMjUjS2g+zmn+1FhOXuciArAnmzVpai2mT1sRAWgDLY+IyrkZluJqJCDvcBNRaOvju5n9+7HlnJEhbXyPhowh626iAqZ2INHVADOZiszRbUd2IYiKmxmL3BT0eiro/vZt/uxRRxRYQN7wIgKwD5svUVUyMo2EVEBOJUty4gKu7HNRVTYxl7gpqLRV0f3s2P3Y8s3RbVt7DEjKgC52UqLqJCbbSWiAnAeW5MRFfZkW4yosJm9xg2jcQ2g+9mr+7G1m6LaZvawERWArGyZpai2A9tQRAXgDLYaIyrsz7YbUWEze5nrRyPaQPdzXPejQib24BEVgHxsjUVU2I1tLqICcCxbhymqHcI2HVFhG3uZ60cj2kD3s8tSsCUbUSEr20REBSAHW10RFfZkW4yoABzL1mFEhaPY1iMqbGMvc/1oRBvofvIvBVuvERVys61EVAA2s6UVUWF/tt2ICsBRbAVGVDiW7UNEhQ3sZa4fjWgD3U/mpWArNUW1HdiGIioAG9iiSlHtELbpiArA/mztRVQ4g+1JRIW17GWuH41oA93P7t2PCruxzUVUANayFRVR4Si29YgKwM5s4aWodgbbk4gKa9nLXD8a0Qa6n5xLwdZoRIU92RYjKgCr2HKKqHAs24eICsBubMmlqHYe25+ICqvYy1w/GtEGup9sS8FWZ0SF/dl2IyoAC9lCiqhwBtuTiArAPmy9RVQ4W8a9spe5fjSiDXQ/eZaCLc0U1Q5hm46oAMxmSyhFtTPYnkRUAHZgiy2iQgFsxyIqLGcvc/1oRBta737s3I9GQ5+ydRlR4Si29YgKwDy2flJUO4/tT0QFICtbZhEVimG7F1FhIXuB60cj2tB092MnfioaPc1WZESFY9k+RFQAZrDFE1HhbGXuFa7E1liKasWw3YuosJC9wPWjEW2g+3kdjZ5gyzGiwhlsTyIqAE/ZsomoUADbsYgKQCa2wCIqFMZ2MqLCEvYC149GtIHu53U0eowtxBTVzmB7ElEBmGZrJqJCMWz3IioAm9nSiqhQJNvViAqz2QtcPxrRBrqfkRM/dbuxJZii2nlsfyIqAGNstaSoVgzbvYgKwDa2riIqlMr2NqLCbPYC149GtIFvPfu5t1siaeSQLcGICmcrc69QJlstERUKYzsZUQFYy1ZUimoFsx2OqDCPvcD1oxFtoPvxcz+8ZZQtvogKBbAdi6gAPLJ1ElGhSLarERWAVWw5RVQonu12RIUZ7DWuH41oA92Pn/vhLUO27CIqFMN2L6ICcGMrJKJCqWxvIyoAy9laiqhQA9vziAoz2GtcPxrRBrofP/fDW4ytuRTVimG7F1EBeGfLI0W1gtkOR1QAlrBVFFGhHrb/ERVesde4fjSiDXQ/fu6HtxhbcBEVCmM7GVEBqHl52G5HVADmsfWTolpV7BAiKjxlr3H9aEQb6H783A9v6bOlFlGhSLarERXQNlsVERVqYHseUQGYwRZPimq1saOIqPCUvcb1oxFtoPvxcz+8pWPrLKJCqWxvIyqgYbYkIirUw/Y/ogLwiq2ciAp1smOJqDDNXuP60Yg2tN79BDv9/WjEO1thKaoVzHY4ogKaZIshRbWq2CFEVACm2ZqJqFAzO6KIChPsZa4fjWgD3c/67keF4tluR1RAY2wZpKhWGzuKiArABFswERUqZwcVUWGCvcz1oxFtoPuZtRRsbUVUqIHteUQFNMaWQUSFOtmxRFQABmyppKhWPzuuiApj7GWuH41oA93P66VgqyqSbq+I7X9EBTTDFkBEhZrZEUVUAB7ZOomocBV2dBEVBuxlrh+NaAPdz4ulYOspJd2xLnYIERXQADv1ERUqZwcVUQHosUUSUeFC7AAjKoyxV7oU1ZpB9/Os+7HFlKK71caOIqICrs7Oe4pq9bPjiqgAvLPlEVHhcuwwIypgDN3Psu5H96mTHUtEBVyanfSICldhRxdRAc2zhZGi2hW1c6Tb0f28saYnxZZRRKNrZkcUUQEXZac7osKF2AFGVEDzbGFEVLgoO9iIChig+3ljfU/KJdeQHVREBVyRneuICpdjhxlRAQ2zJRFR4dLskCMq4BHdzxvre1KuuoDsuCIq4FrsLKeodkXtHCnmsPUQUeHq7KgjKuAR3c8b63tSLrx6+oeWogIuxE5xRIWLsoONqID22EqIqNAGO/aICuih+3ljfU/KhddNd2hdVMBV2PmNqHBpdsgRFdASWwMpqjXDDj+iAm7oft5Y35Ny7RXTXRJdVED97MxGVLg6O+qICmiJrYGICi2xGYiogBu6H7HWJ3L5FdNdFZc/0qbYaY2o0AY79ogKaIOd/YgK7bF5iKiAd3Q/0lrrE7pLoosKqJad0BTVmmGHH1EBV2fnPaJCq2w2IiqA7qcz7H5UuLT+VZGiAupkZzOiQktsBiIq4NLspKeo1iqbjYgKoPtJYk1Y96PC1fWvihQVUCE7lREV2mPzEFEB12VnPKJC22xOIio0j+5Hi6PN7id0l0QXFVAVO4kRFVplsxFRAVdk5zqiAsYmJ0XlVrXe/fSXQoOtT9KfhBQVUAk7fSmqtcpmI6ICLsdOdEQFvLPJsWhQe+h+WApMQvXs9EVUaJvNSUQF1MzOZvfPflIJHZsfiwY1punux1ZARIX22DxEVMBGv/z6ee8T1b/+7cevf1ElFztxERUw/aSvMqpiJ3EqGo0em6JhNK4l7XY/du4jKrTKZiOiAlb6/auHvueez7/5pCGb2SmLqIB3NjkWDUIN7NxNRaPxyGZpGI1rSaPdj534FNVaZbMRUQErTXY/q98BslPT/bOfVELH5seiQSibnbWpaDQe2SxNRaObQffT6IkfZXMSUQFrvHc/X/76s/7555/f/9Q1QEvf/rHzMhWNRo9N0TAah4LZKRuNhmLAJmoqGt2Mkrqf/b8hkdgpj6iA6etEZSzw+9eDFufjh9vy/vC7bprBzsVUNBqPbJaG0TiUys7XVDQaAzZRU9HoZhTS/RzxDYnEzndEBbyzybFoENbqup/5C9tOwVQ0Go9slqai0djV2p9v7WRNRaMxYBM1FY3O7edvfuyd9MhPH1U5Wendz8Z3gOy8dv/sJ5XQsfmxaBDWuK/zr77XTS/Z/I9GQzFgEzUVjcZeNv18aydrKhqNgeFE2S0paXBWo+d9r091liqp+8n0DYnEzutUNBo9NkXDaBwWuv8M1F/qT9nMT0WjMWATNRWNxl42/XxrJ2sqGo2B4UTZLSlpcD5TJ53u50G2b0gkdlKnotF4ZLM0jMZhid7bvwsufpv5qWg0BmyipqLR2Mv6n2/tTEVGb4yk8RiyiZqKRi/RnUT9u+f+Cv54ij9+oPt5ZcU3JBI7o1PRaDyyWZqKRmOe/iff8z/zCjbtU9FoDAwnym5JSYOxm/U/39qZijy/vSjdVT+MRhzF5moYjVvi2RH1vuO17tObAxTb/dzfNFv0ahHspI5GQzFgEzUVjcYMvZ+BFv/QY9M+FY0e+uM/n/3fv//yns9++K9ubMlwouyWlDQYR5rz862dpi6jpXSXWfz71xVEe76WzdUwGrfEkz1c8Sn/8QrtflbPnZ3RqWg0BmyipqLReOHT1192zw6Lf9PB5jwyemMkjR/479//odaH7ud5NBrHef3zrZ2j59F9ZulfldeJDm6azVg/GrHQkx14bG37XwAq5Re+Qondz7pvSCR2Uqei0RiwiZqKRuOZ3jW//LtrweY88vx2868ffutan2a7n2BzNYzG4UBzfr610/Qyutsr/Y+hLxYd4TSbsS4qLzS99Xt/+dU3w7fZ+N7PhP7SXPqZV7CTOhWNxsBwouyWlDQY0178fPnys3Cb8C6jpXSXBz//8d70/PbZ7e2fRd1P2kn9o3I2V8NoHI4y5+dbO0dzons+p29bX7MB0jE+ZZOWotpC01t/9e5aGR+HldX9bPmGRGIndSoajYHhRNktKWkwpm3qfmy2n0f3efDpi/SWz3efvv1ucffT30/dVDmbsX40AkeZ8/OtnaPI1O39pDFP3d6O/fB7tw9XyvsxTj/z9HqO5VM3wh5ft77p78P9pXz763te5XQ//fla+dGgndHI6I2RNB5DNlFT0WhMOq77iehuN7eO549v7/+9svuJ6NbK2Yx1URmHmPP6ZycoRbVXl4YGTbht/e315bYb14kO8qjuxx/8Par19uHxia77MgDdz93Wb0gkdkYjz2/HKJurYTQO+7DZnhPdM9FnXv/+4v2pbmn3o8uwFxXqZ5OWohp2N/fnWztBERXGzB/Z/YWh9IZTrw+rJu+H8VIJ3c/9Hb6H7uf+q3Z0P7Lpp+SOnc4uo6V0F4yyuRpG47ADm+rI1O39pDHvbp95/eM//3r/N92PmZ467Gfuz7d2diIqTJg9+LYDtw6g635mvr6so0OeiAZl1r2ePuswZs/bpP6BdFEt3P+a5X03eh1nEb/5lbn7uR3bPSo8k6H7sXP5PLoPptmM9aMR2IFNdYpqrxZ5GnPrdX77+x/pBrofNzpv2NPcZ3g7NZF0+xM2PqLCo9vr7sgr8a7dzxnK6H6envRC5jxn92NH2EXlSUd3PxHdDdNsxrqojB3YVEdUGDMy8vaZV7/RofsxI/OGfe3Y/YTXd7m9D9F/KaH7eTFpr6TZs6gmvTf8+tnw5Za8Suh+trITOSe6J56ySUtRDbnZPEdUmDAcbH/gZzQveyC7eCMqXMVw3rCzWd2PnZdIuvNLL+815w/8XKgHGp1t/6Tp5aS9NNjEW1Tr6X3aFXnWkB2v+u7HzmJk6vZ+0hjMwdQdwCY5osI0Gx+h+5nDJk234lR2UiIqzGB3jKhwQ/eT0j/G5zM2hz14imqVqLv7sVOYotpEtYsG4RXm7QA2yREVnppzFz75MnMmDUeyM5Ki2jwr7lv7J1/d5RnRTfLknTa99bJiuoYGD/4W1Spxte5HhTHzR6KPedubzXBEhVfm3Ivux8yZNBzJzkhEhdlW3L3q7qe7NruoMKb/1lc62BXTNdQ9pkXlGlTc/dgpjKgwYdFgdJi3Xdn0RlSYwe4YUaFne/cTUe0SXs4YjmSnI6LCEiseoZ3up/9uUK7up9vuMBpRg1q7Hzt/ERWm2fiICniKSduPzW2KavO8vO+i7seu3C4q1+/ldOFIdjoiKiy39HHofubP1VC33WE0ogYNdT9hxV3ApO3H5jaiwmwb727syu2icv3yThc2stMRUWG5XI9TBbs8IyqEX379/PH/Idr/rav0d663z1X3gMNoRA2q7H7s5EVUeGXdvRrHpO3EJjaiwhLbH6HPrtwuKtcv73RhCzsXERVWyfhQ5bPLM6JCuP/fJAa5dUXb58ofuReNqEF93Y+duYgKM9gdIypgGjO2B5vViArL5XqcYFduF5Xrl3GusIWdiIgKa9mjRVS4Irs8IyqEye7n/id/tk/U4MHv0YgaVNb92GlLUW2eLfdtENO1E5vYiArL5XqcYFduF5Xrl3GusJqdhRTVNsj+gMWyyzOiwrv+R10p6QOvzvaJssfvRyNqUH33o8JsG+/eGqZrDzarERVWyfhQduV2Ubl+GecKq9lZiKiwzR6PWSa7PCMqzLN9omzr/WhEDWrqfuycRVRYYvsjNIXpys6mNKLCWvZoERWWsyu3i8r1yzVRWM1OQUSFzexhIypcjl2eERXm2T5LtvV+NKIG1XQ/dsIiKiyX63FawFzlZfOZotoGuR7QrtwuKtcv10RhHZv/iAqZ7Prg5bDLM6LCPBtnabjp4S1VoPvhGfAZ5iovm8+ICtvkeky7cvvRiMrlmiisY/MfUSGTXR+8HHZtRlSYZ+MsDTc9vKUKdXQ/drYiKqyS8aEuj7nKyCYzosJm9rARFZawy9aiQZXbPktYzSY/okI+9vgRFa7Frs2ICvNsnKLhpoe3VKGC7sdOVUSFtezRIipggInKxWYyokIm2x/cLluLBlVu+yxhHZv5iAq5HbOVc9m1GVFhno1TZJseRuOKV3r3Y+cpRbUNsj/gVTFRudhMRlTIZPuD22Vr0aDKbZ8lrGDTnqJabsds5Vx2bUZUmGfjFNmmh9G44tXX/aiwzR6PeUlMVBY2jREV8rHHj6gwm122Fg2q3MYpwjo27REVdmAbiqhwIXZtRlSYZ+P82KaH0bjiFd392EmKqLCZPWxEBTxilrazOYyokNvGrdhla9Ggym2cIqxgcx5RYTcHb+54dm1GVJhn+/zY1vvRiBqU2/3YGYqokMmuD34ZzNJGNoEpquW2fSt25XZRuX7bpwiL2IRHVNjT8Vs8mF2eERXm2T4/tvUuKleC7meXB78MZmkjm8CICjuwDUVUmM2u3C4q12/j/GApm/CICns6fosHs8szosI82+fHtt5F5UoU2v3Y6YmokI89fkQF9DBFW9jsRVTYzcbN2ZXbReX6bZwfLGKzHVFhf2dt9xh2eUZUmGf75NjWu6hciWzdj82CRYPmsXMTUSG3Y7ZSNaZoNZu6iAp72rhFu2y7qFy/jfOD+WyqIyoc4sRNH8Auz4gK82yfHNt6F5UrUVz3YycmRbXcjtlK1Zii1WzqIirsaeMW7bLtonL9Ns4P5rOpjqhwiBM3fQC7PCMqzLN9cmzrXVSuRAXdjwo7sA1FVMAN87OOzVtEhf1t2a5dtl1Urt+WycF8Ns8RFY5iW4+ocAl2eUZUmGf7zNjWu6hcibK6HzsrERV2c/DmqsP8rGCTFlHhEFs2bZdtF5Xrt2VyMJNNckSFY5WwDzuxyzOiwjzbZ8a23kXlShTU/dgpiaiwp+O3WBfmZwWbtIgKh9iyabtsu6hcvy2TgzlshlNUO1YJ+7AHuza7qDzD9pmxTXdRuRJ0P0dvsS7Mz1I2YxEVjmJbj6gwg122XVSu3+qZwUw2wxEVDme7EVGhcnZtdlF5hu3TYpvuonIlsnU/wSaii8pP2fmIqLC/s7ZbBSZnEZuuiArHWr0PduV2Ubl+q2cGc9j0RlQ4SVE7k4tdm11UnmH7tNimu6hciSK6HzsZERUOceKmy8fkzGdzlaLasVbvg125XVSu3+qZwUs2txEVzlPa/mRh12YXlWfYPi226S4qV4LuhyfEZ5ic+WyuIiocznYjosIrduV2Ubl+66YFc9jcRlQ4j+1PRIWa2bXZReUZts+JbbqLypU4v/uxMxFR4Si29YgKyHGdNMImKqLCSdbtjF25XVSu37ppwUs2sREVzlbmXm1h12YXlWfYPie26S4qV+Lk7sdOQ0SFY5WwD2ViZuawWYqocJ51+2NXbheV67duWvCczWpEhQIUu2Or2bXZReUZts+JbbqLypU4s/uxc5Ci2rFK2IcyMTNz2CxFVDiP7U9Ehafsyu2icv1WzAmesylNUa0AtmMRFapl12YXlWfYPiG26S4qV6Ks7keFw9luRFRoHtPykk1RRIWzrdgru3K7qFy/FXOC52xKIyoUo/DdW8EuzxTVZtg+IbbpLipX4rTux05ARIWTFLUz5WBanrP5iahQgBU7ZlduF5Xrt2JO8ITNZ0SFkpS/h0vZ5RlRYZ7tE2Jb76JyJc7pfmz2Iyqcp7T9KQTT8oRNTopqBbAdi6gwza7cLirXb+mE4AmbzIgKhbGdjKhQLbs8IyrMkGUqbOtdVK5Ezu4n2FykqNZjJyCiwnlsfyIqtI05ecImJ6JCMZbunl25XVSu39IJwRM2mREVylPLfs5kl2dEhRmyTIVtvYvKldi9+1Ghx2Y/osLZytyrczEnU2xmIiqUZOke2sXbReX6LZ0QTLGZjKhQpIp2dQ67PCMqzJBlKmzrXVSuxNHdj019RIUCFLtjJ2JORtm0RFQojO1kRIUJdvF2Ublyi6YCT9hMRlQoVV17+5JdnhEVZsgyFbb1LipX4tDux+Y9RbUC2I5FVGgYEzLKpiWiQnkW7addvF1UrtyiqcAUm8YU1QpW3Q4/YZdnRIUZssyDbb2LypU4uftRoRiF797xmJAhm5OICkVatKt28XZRuXKLpgJTbBojKpStxn2eYpdnRIUZssyDbb2LypU4rvuxSY+oUJLy9/BgTIixCYmoUKqle2vXb0SF+i2dCgzZHEZUKF6luz3KrtCICjNkmQfbeheVK3FQ92MzHkm3l8Z2MqJCk5gKYxOSolrBqtvhnTAPG9kERlSoge15RIUK2YtsRIUZck2C7UCKapWg+3G17OcBLjoVn77+8nGVfvnrzyq9YBMSUaFsNe7zHpiHjWwCIypUouqd73t4+nqPCjNknATbh4gKlTii+7HpjqTBZapoV/d2xakYtD63fPW9Rkyx2YioULxKdzs75mELm72ICvWoff879twVUWGGy0zCdpm7n2BnxeY6onGlqmtvd3XFqZjsfp6/A2RTEVFhmf/+/R///sv/9fKP//xLpR3ZnkdUaAyTsJpNXUSFqtghRFSojT930f2ssq77efbZQf92m+gUjStYdTu8kyvOQyzdnz7qv998/NAt14fbjU1FRIUFBq3PLV/M/OBtg807fwVMwmo2dREVanONo+heYbuoMMM1ZiCLFd3P688O0j/jP2yiI2lA4Wrc5z00MQ/f/3RbwJPdj81DRIVlJrufA94ByrH/1WMSVrvM1F3jQG5PWfeoMMM1ZiCLnN2PfXZgsxxRoXiV7nZ2DcxDbzF/+F23PbJJiKiwWHQ/f3yr/37z7XddA/Rw+x7sECIqtIQZ2OIa89YdRRcVanN/2X2Pbp3hGoefxbru5/VnBzbFERVqYHseUaExF52EsfZ9+ks/NgkRFbb7+Y/Dup+w11HUgxlAuMYy6D996aZ5rnH4WeT41vPYZwc2xREVKlH1zudy0UkYdD8T7/oku01C74Ow7z7ptj3lOZA//vOZOrZ/f/bDf3VjJfLMACp3mWWQnr70j9kuc/jbbe9+Rj47sPmNpNsrUvv+Z3HRSRh77+dv//z8m8kWJN8MjH3155Bf+wrdUXRRYYGH/af7QY1sGURUaEPLx27WdT/PPjuwyY2831wZO4SICi1pYQZ6n9v++PUvunE3g+4n47s+v/z6+e1inOrkNp7Qf/3wW3/n6X5QqZZXQsvHbjJ1P73PDmxyIyrU5hpHsUUbM3BfzE/e/slk7L2fPG3EwyW5S/ejbyn99tntEOh+6jd4Jn/6V69qNfjBoPGV0OyBm3zv/VxuYV3mQFZrYwaO7H4e9H7n67e//6Eb1/n5mx+7y/DJgdgJjajw2qcv0q5+96nbbbqfyo0/jUde/t3zqoz8YMBKQMjwrefhZwfXWFXdUXRRoRkXPPzvf7LvOPf7hsOf9O9vBW3qJPRrBz9+PqONW3dObx3P2++m0f1cxWT3k+8doMGbnUd9y60z9YPBvsvg1F8OsEN+/ndcN7JPw4/59dVcMnQ/J/70vLfuCtnxOinYBQ///vuJw+z4HDEhS/fz+1dp/z/83v0ckrn7uf1mfvqb1PV2P2HZgV9cPG+//tslG4x/zhs54I+by5IfDPJ5OPBjL5Pbs8FDdvpG4+394IdsfRv7SHQ/z3TPlW0+Y17w8Ce7n/2/8hw9xON3nPs/Nq1+Pbi9Yr29XO3T/dye424/tVfd/eCZ+9Wxb/dz1DtAy34wyOW8Xw4YbX0iezy5jbY+kWt3P3GFFPTZwb7spSKiQhsueey9H3CVg1r2+982HGbt28W3l6t03c18il90Qm+9zv1Jje7nonofhD39C1izRffzsLC7lXPM5yNLfzDI47xfDug/s/UP8+OH/N1P71Q+HOC3312++7lN8SBZfmIoS/dSMf8F4zJaPvb8Jruf1c8Xtx/1bt/SyP8Uf9vnxyc47TndT/3Gvvqz36993S+B/bufVT8YbHbeLwfM+IMX2dT8J0/7MnY/+392cIbGO4BmD3wP/R+Ytj933J7Q79dd9qf4wVcaR0IPVLNB95PnXZ9RvQ/Cdv/j5vv/YDDmdoG/9XYHdz/3T2D2/5sF96eFw7/Dntea7/10K6nL7s3mebqXf5oAFOT2Q0j/0qP7wUJj7/3kfD4f++rP/i+ZB/xgMOL2ztYpvxzweID9LwDl/0Dm8dD6XwA64gPNjLJ86/niaH1QmsEvtY5kpyf6g5/WcZjej7W53sgfdD8H/C/tDvnBYODcXw64d7FffXP/COyWvB/L3M/pFz/cPwK7pbnf+QJwKLof7OD+Ippp8Yy997Pzyjnl0rhdFGf9csD4e3j35Pw4bPyc3lPPx2F0P8BFHPH2Pt3PlWXvfh50K2fXdwhO6H7O/+WAfvcz8nlf1rd/+t3PSLdX0ds/dD/ARdD9YIHvj//bJfcXzoMXz66XRgFfj5tqW7svAO3S/TweVPcFILofAMc6pvvBRUz+9m5kp79dQvezl65zfTjA+6/B5/zqT3e8Dwd1/zV4uh8Ax6L7wQJ7/+2Sn3f54+brHH9pHP0W6f1sjn7ylbWdvf/dptFPvqr5zS+6HwBoUe/VUcnZHNxfI4c5+gXy+t3P0y8+5z7qZ198PvhdvS3ofgAAuU12P9V8MrLFGV+Pm/j/fO3yFywn/j9fB/xFg3zofgAA+fU+DVEqemNgozO6nzeP7+fl/LrP0OP5ra+ppfsBjtN7YsoWPTQAYDa6HyAb60tKiPYMANBD9wPkYW1HUdEuAgDe0f0AGVi3UWC0owAAuh8gC2s1Cox2FABA9wPkYt1GUdEuAgDe0f0A2VjPUUi0cwCAG7of4EzWqbyM7gYA2IDuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtIXuBwAAtOTPP/8fOk+J1EA1U1gAAAAASUVORK5CYII=" alt="" width="728" height="244" />

上图也就是DFS搜索的时候做标记的过程,这样新的编号为1~6的节点所管辖的范围分别就是[1,6]  [2,4]   [3,3]  [4,4]  [5,6]  [6,6],其中左边的是左值,右边的是右值,节点1的区间是[1,6],正好这棵子树有6个节点,其他也一样
那我们吧新的节点放进树状数组时

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCADHAagDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkzzS01qAPN/EHxJ1yfxvceHfCOh2utyaO0D6413eG2aGOVdyLCNpEjlfmwSq4BGckCusHjbQ08UR+Gn1KBdfe3+1Lp5fMpj/vY/CuW8beDPCniDxHbX97rsujX9uV+0x2OpfZTdoPmRJwCCwBwR0PbOOK4u48MB/2gl8WJrWinQWtYiSbxAyyIpTb5X8T9CJdw2g7dp60x2Pegc0tYy+LtCUEf2zYD63KD+tKPGGhEZ/tiw/8CU/xpBY2KKy4fFOjXMyRQ6rZSyuQqolwhZiegAzzWmDmgQtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFITigBaQnFJvGcZ5+tYfiTxxofhNFOq6nBZswJWJ3+dsdcKOT1oA3C4H86aWBIHfHFeeS/EXX/EgEfg/wvNc5POoa4zWNoq4yCDtZ3z22IRnqV60r/DfWfEgYeLPFVzeWz/f0/RlbT4MY6FlYynBPUOOmcDpQM474ReCdA8UXnxHutX0ax1S4TxjfxpNdQK7BAkW1QSOg9K9A/4VN4K/6FXSf/ANOf0ry74TeNvCfwlsPiFp+talaeH7a18VahNDDOduICIiHH97JJOeSSTnJzXo8Xxp8DTRo6+JrLbIAwy5Bxj6VaLWx454w+KHwy8Bpq6a14A0zTruwmMUMdw9lGjnBKCSQuEgZ8fKrkEj8cex6T8NfBGr6VZ3y+E9HRbmFJgogikC7gDjcuVP1BIrza4/4V9q+qQa5L8TXu9WtizaZf8AmRN9liJyUA2bZBnuwPQeldl4P+IHw38EeHLHw7pvieyFrp8IRUaXLgEk7mGO5JPTHNNXuBi/HH4feGPD/wAMtQv9N8P6bY3sN3YmOeC3VHQm7hGQRz0J/OvcEGBXhXxq+JXhbxP8Ob7S9K1u11DUbi7sVitoSWdyLuFsAAein8q91U5FQyWOooopEhRRRQAUUUUAFFFFABRRRQAUUUlAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhOKAFopu8ZxTJrqK3heWWRYo0G5nchQo9ST0oAkzQWrz69+NGkz39zYeHrDUfFt5bSGKY6Rbl4InBwyNOcRhhxld2eQcYqFtI+Ivi0gX2r2HgzTmBDQ6Qn2u+IOCD50o8uJhjBAjlBBOGHFMZ2+r+ItM0C2a41K/t7CBQSXuJAg9e9cVcfFe41uRo/CHh+88QIAduov/AKPZZBwcSNy/1UEe/WtHRvhD4a0mYXM1iNX1E4L32qMbmZ3zndlshTn+6B6dK7FIhEgVAEUdFAwBSA8/m8HeMPFK41vxL/YsHRrTw+pUkcHPnOMg544GK3PDfw28P+FJJJtP09PtchzJd3LtPMx7ne5JGTzgYGSeK6cDFLQIYEx0NH3fenE4rjviBr1zEttoWkMDrmq5jiOM/Z4uBJM2DnAyB9SKAMG7srT4o+M5oPsdvP4e0S4Md7JLGpa7vUClYypH3EDA7u5wOnNbXxKv7HwX4D1rVo7S0imt7crAzQKVErkJFkY6b2XPtmuj8P6FbeG9HtNNsgVtraNY1Lcs2B95jjlj1J7k1xnxkjbVLXw7oWBImp6rCs8JHyvAp3Pn2DbD68Uxmr8O/A1n4T8C6Ho8un2kc1raqJ0ijBQTH5pNvHQuzEDtmsDw1ounr8YfF5FhbD/RrYZ8legReOnvXpoNcB4dO74yeLCM4FlaqfrtyT+RH5UAdsmlWcbK0drAjKcqwjGVPt6VbAIHNApaQgooooAKKKKACiiigAooooAKKKKAEJwcVDPfQWphEs0cZmbZHvYDe2C2BnqcAnHoD6Vw/jzxdrcfiSx8K+F1sU126tHvjcaoH+zpCrBCMLyzEnoOw561w/7SWvXFp8EbHVb++sfDepieC4+2TBbm3s51Rn3g5DOFIJATLPgIAQxoA9qttZsL2RI7e8t55HTeqxSqxK4U5AB5GHU/8CHqKnW7ha5e3EqGdFDvGGG5VJIBI64ODg+xr88Pg9Z+MdKHg2PS/GFv/wAJUdM0nSLOG10+2uYI0klCX6rMr/O6W9i8megEKLgHr2PxN8Yarbn432cfiOyvoksJzNdWdrcLeGWK22CCUqf3MSD5wUILybwozk0AfcCTpIMowceqnIp4Oa+WP2TJTH8V/iHaxMUtE0XRJEgU3YjDtLqIdgtySwJ2rkjg7R36/Uy9KAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhOKWmnrQAhlVWAJAJ6DPWl3A9Oa8J8b2sTfFbd4ltdeup2vbVvC0mitKscKBY/P8zaQmd4lLeZnKHAwerPCXxpu/E/7Uet+EpBe2OmWejuILK4tJEEssN00clx5hXaVYMm3BJIHTg0Ae9daWm7setBcD6etAC0FgK5vxH8RPD/hZCb7UEMudotrcGWZjxkBFyT1B6dK59PF/i/xTvXQ/Dn9k2rAKL7XHMZBPUrEuSeCMZI5yO1AHoTSKgJPQDNcbq/xf8L6XOLePURqV42AtrpqG4kYnoAEyOeg+orPb4V33iFg3ivxNfatCcFrCzP2S2PfB2fORkKeGHSuy0jw7pugQeTpmnWmnQ8/u7SFY19+FA60xnEDWfiF4vYDTNIs/B2nt/wAvmtt9quz3UrbRnaAw4O+RWXnKnpUknwR0fXSZPFd5f+L2Yktb6nORZnP3lNsmI3Q8ZWQOOB759EC0opCuVdO0y20iygs7G2hs7OBBHDb26BI40HRVUAAAeg4FWlGBilooAKKKKACkJwaWmOcflmgDO8R6/a+GtHutSvGZYLdNxC/eY9Aq+5JAHuawPAfh263y+JNajC6/qCYaPBH2WDOUgA7YGN3qRVC3RPiT4pNzKTL4c0adTbIBmO7u1Y/vN2eVjI4HTdznjn0BelAwyF6157q841X43aJp4Vj/AGdpMuoOJB8h3yeUhX/aBDdex9q9Bc//AK689+HO7WfGvjrXZGYk3qaVDG3Kxpbg52n/AG2kLEdKBHoQBA/wrgPDv/JY/FgPBNnasOf4duB+oNegdPrXn/h7j4x+LMjk2Vrg/wCzt4/XdQB6CKWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFAHN+N/h9o/xAsYrbVop/wB0xaKe0uZLeaPI5CyRkMAeMjODgZ6Csb4gfCyPxZ8P4PCGlT2ug6YpiiJS0ErQQJ0+z8gRTKQrJLhtjKDtNd7RQB4ro/7OLaJYS3MHiWUeKYLl7rTdZS1EYhYlt3mxKwExkDESkkbhjaE2ptd42/ZotviDFdS6r4y8R2uo3nyXM+l3KQRtCY2R4BCVZChLlwXDODjDcV7RRQB5v4C+DTeCPGep+J5/F2veItR1Gwh06ddUkiMZjikkeIgJGpBUzTYOf+Wh9sejgYpaKACiiigAooooAKKKKACiiigAooooAKKKKACmsM0pOKZJOkUbO7BEUZLMcAD3oA8rvb/xx4l+IXiXS9C8Q6XomnaULZUS50prqSRpIg7MW81ABzgDFKPBnxGW9N2PGnh77YYxEbj/AIRk+YUByE3faM4yx49z6074aa/p3iH4l/EW50y9hv7ZJrOJpbdtyh1tlyM9/wAK9KyO/HTvVpFpHm8/hr4rCCTyfHmhNNtPliTw44UtjjJFx06dB61y+q/Cn4t+LLbT/wC2/ifpVqY4iLmw0zQnWCSQ/wAXmfaFcgDIA4HPIrP8ZQapd698VLS3k1h7eW80aSRUkkWMWmIluBAykFRtWTcEIPPWvSPg3bXFp4ISOZbpLUXU32FLyR3kW13nyQS5LH5cY3EmhIehzmhfCrxn4dbdp/inw3av/FNH4aYysPQu1yWP4muz+DnibUfGfww8Oa1qxgbU720SW4a2QpGX7lVJJAPXGTiupGOfcVwX7On/ACRLwh/14pSZLPRgMUtFFSSFFFFABRRRQAUUUhbFAATiuJ8e67d3d7b+FNEcLrN+okmm3FfsdnvCyzDjl+cKOMnntW/4p8R23hbRLnUrpZHihAxFCu6SRiQAir3JOBj3rH+H3hi60y2vNW1dYv8AhIdWk868aIkiNRny4VJycIp/76Lc9KAOg0TRrfQNHtNNs12W1rGIkB6kDufUnqT3JzV9cgc0AYFBOKAKesXw0zSry8Yqq28DykucL8qk8+3Fcp8GLFrP4d6ZIyusl1vum3997Egj2IwR9ab8adSksvh1qkNvse8vtllbxSdHeRwpA99pY57YrrtH06LR9Js7CAsYLWFIIy5y21QFGffAoAtY7V5/4dI/4XD4tC8/6Lakk9m2jj8sc+9egnrXn3hw/wDF4/F2Dx9ltRj32CgD0EUtIKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKazhepxXHWHxl8EanDrs1r4m0+aHQ8/2jIJcLb4zkknqODyMjigDs6KqaTq1nrumW2oafcx3dlcxiWGeI5V1IyCDVugAopCQOtIXA7GgBc0yWZIVLOQqgElicAD3NcXqXxTsJNTk0rw/azeJ9UjwJU08jyYM5x5kx+Reh4yTx0qCL4fal4mmF14v1U3iZJXSNOkeG0QZ4DMMNLjHVsDkggigCzqHxHhvr6bS/DEC6/q0XEm19ttB82CJZcEKeDwASaqj4b3nihhL4x1ZtViHTS7QGGz7csB8znjuQMEggiu007S7bSLSO1sbeGzto12pFAgRVA6YA4q0oIHNAHmknw117QvFGr6l4W1aw0uy1JIA1lJZjbCY02ApjsQBxVn+wPiKMD/hJdL/8AzXolc38QfEzeE/C15e26rJqDL5NjC+SJbl+IlI9N3J9ACe1O402ed+H7v4k+IfEuuWtv4g0f+zNNZLb7QLM7pLjG6Qem1dwH1z1GKb4vvPiV4a1PwnbR67pNwNa1ddOkZrQjyl+zTzF19/3IGP9o16V4E8Np4U8K6fpylnmRN9xNJgvLM3zSOxHcsSfT04xXM/FnA8Q/DAEA/8AFUrwTj/lwvaLhckTQfiIGyfEelMM9DZnkelbnw18Ht4A8CaL4ee6+3Pp9uIWuNu3zCO+O1dKvelouFwooopCCiikJxQAtFN3jHHP0pQd2fyoAWo5XWMFmYKAMkk8D608sB14rhvHN5P4i1W28JafM0X2hfN1S5iwxt7bnCkZ4MhBUegyfqAVrCP/AIWJ4v8A7SlzJ4d0d1NgCo8u6uupnVupCY2gdCSx7CvQVJI5qrpWl22i6ba6fYwpbWVrEsEMMf3URQFVR9AAKt0ALSHPalpCaAPPfiWV1TxP4J0M8m51Brxs9CkCbiM9idw/I16EvSvMLDUh4l/aC1WGGbfb+GdHihnt5ExsuLlvMjkQ9wYkdT7jFenjpQAGvPvDzH/hcXizdwfsVrgeq7euPrkfhXoJrz7w8MfGLxZznNpan6fL939M/jQB6CKWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZXinR38QeHtR01JzbPdQNEJRn5SR6AjNePx2XxAtvBuoWlr4A0m31bR9MXT9NuHu4JJL9gy/PEekUZC7ismDvK8HGT61401mfw94U1XU7VI5bm1tnliSXIQsBxnHOM1yNinj3xHpOmalBrGk6at1aRTtAtuZAGZQxwSPf9KAN74W6QdD8B6VZvo9xoUyq8k1jdXKXMqSvIzyM8sZKuzuzOSOMueB0HUlgK88/sP4iAf8jPpf0+xf8A1qw/EHgX4j+JnsgnxDj0y1t5S00WmWqRtckEYUykEqAQcheucEjFOw7HZ+IPiXpWjXkmn2qz61rCj/kH6anmyAnoHI4QcjJJ4BycDmse38I+IPHMTXHivULjS7Gfp4f06YKI0y3yy3CHLsQVJ2EYK8E5NU9L8D+MdCilTTNW0PT45ZDK62+nhdzE5JJ6t9Tk89avfD/W/EcnjHxHoWvXlnqH2BLeWCe2h8psOmWDDvzQB2mjaDp/h6wSy0yygsLSMkrDbxhFyTknA7nqT1PfNX1GBQowKWkIKKKKAELBetee6on/AAmHxWsbNcSaf4diNzcq2drXUi/uhjuVQ7uf+egIPBB6vxb4ms/B3h2/1m/LfZbOIyMsYy8h6KiDu7MVVR3LAVgfCHw/qGjeDre51tI18RamxvtTMROzz35IXPIUDAA7YxQB2yjArzr4tAHxD8MM4H/FUr1/7B97XooGBXnHxdONf+GHJH/FVL0/68L2gD0deBS0lLQAUUUUAFcv8Tjr6/D7xCfCuD4kFjKdPBAI8/adnXjrXUV5J8QLa+8RfGzwv4dXXtU0jS5fD2qX8sOmSpH5ssdzYIjMWVs4WaQYGPvUDRw0mu6T4M+EHxB1L4YXWu315a2cUkn2+eSVBeHeJNjz5CT4KmQfdX92cDPPpfwC8TDxD4C8l5dWnvdLunsrubWbuG8meXasuVuIQI5k2yqAydMFTyppZ/hGl2rpN4x8VSo42ur3sRBUg5BzF0OTxWRp3wn0Dw55eg2PjLXNM+zWxuF021u4IVhhDfM4jWIBV3HnAAyT3zTsOx6H4v8AE0HhXRJr6UGWXKxW9ugJeeZztjjUDnJbH0GSeAaz/APhibQdMkvNSbzte1FvtN/IcHY5/wCWSED7kY+VcDnGepNcND8FNG8V3Wk+I4PHXirUIYYnNlLFqaGL58fvVAQDdgFQ3oxpNf8AC954K8V+Cri08V+IrxLrVBBNbXl3G8MqFG4ZRGCRnngjmgR7KOlLSKMClpCCmt1FOrn/AB9qn9i+DNavQpcw2kjbVfYT8p6HsaAOI/Z8055dG8TeJZJPObxJr13qEQfmWGEEQpAxx/AYnwBwN3HU16sBtGK574daUdD8C6DZMMSRWcXmfLtJcqC5I9SxJPua6KgBD1rz7w5/yWLxcMY/0W1zx/sDnP6fhXoB61wHh/I+MXivcQT9itdp64XHT89x/GgD0AdKWkFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAct8UCB8PtfB4/0R/5VL4KP/FFeHf+wbb9f+ua1X+K08Nv8OvETzzLbx/YpB5jqzKDg4yF5xnGcV534Zg+O9n4b0q3+xfD2LybWKMRyz3wZQEAwfk6+vvTTsNOx6/eYNpOCruDG2Uj+8wx0HvXl/wRguY9T8WzLa6lZ6LNcQfYotShMLKQhEo2Ekk7sEvnDbvanMfjuQc2vw6PH/Pxf4/9ArK0/wAXfGXV/EWtaFb2fgEX2kpA1y0lxfbGEwZlA+TPRTn8OtO5XMe0ZA64ya4Pwrn/AIXR4zPb7HZAc/7BrIz8eD/y7fDof9vF/wD/ABFbHwz8K+MLDxBr2ueMn0MX1+Io4odCaZolRFxljKAd304xihsTdz0YdKWkHTmlqSQprNt7E/SnVU1TUbfSLC5vruUQ2ttE00sjdERQSzfgAaAOG8WEeLviJofh8jztO09P7WvUH3WdWxArf8C+bB9Aewr0JDketcL8KLC4k0i71+/jZNS1uc3cjPw3ldIRjsAmAB6Y713a0ALXnPxa/wCRg+GHGf8AiqV74/5h97Xo1ec/Fv8A5GD4YY4/4qle2f8AlwvaAPRQc0tIvFLQAUUUUAFeXa5/yct4SwMn/hEtZ6Dp/pmmV6jXE+NPhrD4p8TaX4gh1a/0jVdPtLixjls5dqtDM8LurDv80EeD2waaGjrCDx6cV55qHhPVpvjRN4gi022bSW8NSaabrzgJXmacOEZf7oCnn1k+tYHjTw1rukpaaXpXjfWLjxDqEgjto96t5CE4e5dT/wAs4xkkHG44UHJFXfFHgXXvD/gvU9QTx5rU17Z2LyiViAHkVCdxXoMkdKdx3Oi+DPh7UvCnwv0DRtWsIdO1CzhaKW2tn8yKP52wFbuMEVV+J/GveAP+w0nU/wCw1UPDPgHWtV8N6XezeOtbae5tY5nbcFyzKCeBwOtaNv8ACSaTXNI1HUfFGraoumXBuYrWaXETvtKguO+M5HuKTEz0QHNLSClpCCvPvjJm/wBH0jRFVpP7X1O3tZUQ4cwht7kHtgLnPYZNegV594ikOufFjw5pgIaLTYJdSkAOCrcxqf8Ax4D/AIEaBo7+PG3jp6U+moMD8adQIQ1594dCj4xeLQvObS1Lf720ZHvxt59zXoJrz7w8CPjF4tzxmztWGeMjaBn8wR+FAHoIpaSloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAornvGnj/QPh7pyX3iDUU062kfYjFGkZjjJwqAsQAMk4wB1xWvaarZ38du9tdQ3C3EQnhMUgbzIyAQ64PKnI5HHNAFqkLAHBoBzWJ4y8UW3g7w/d6rdElIVwkSjc0shOERVHJJJAwKAOU8Rp/wALA+IFnoOSdF0PZqWofLkS3Gf9HhPsMGQ9c7QpGGr0Zelcx4B8NXHh3Q2F8ySateTPd30iElWlcjgE9lUIg9kFdOBgUABGTXm/gsf8Xp+JX/XHSu//AEylr0jvXnHgr/ktPxL/AOuOlf8AoqWgD0iiikLYoAWim7vY/lTqAEJxXnvxMJ8S6toHhJCWt7+U3WoIhw32aIg7Wx0Vn2jnghSK726uI7WGSWZhHEiF3duAqgckmuC+FFnLrSal4yvQ4vdblJgSTj7PaJxFEB27sexZiR1oA9AjUIgVQqqvAVRgCnCgDFLQAV5x8XMf8JB8MM4/5GlcZ/68L2vR684+LgJ8QfC/HX/hKl6/9eF7QB6MOntS0g6UFgPqaAFopu4f0oDg0AKTisDxp4vtfB2krdzpJcTTTR2ttawjLzzSOEjQemWYZboByava9rtn4c0ua/vpfKgjwOBlnY8KqgclicAAdTXPeFtButU1OTxHriMLx3b7BaueLOAgbQV6CX72489SBxnIBZ8GeEZdFlv9U1GZLzXdSk8y4nHzCNRwsMZIB8tccDA5JJ6074l5Hw78SgnP/Evn/wDQDXTgYFcz8Tj/AMW88S/9g6f/ANANAFjwISPBOgf9eEH/AKLWt4HNYPgU48E6B/14Qf8Aota3DIqKSxCgckntQA+iqem6vZazYRX2n3cF9ZTDdFc20iyRyDOMqwODz6VbBzQAhrzvwO6+IviR401tWEsFlJHosBK7WR41Dzj3BLR4P+ya76+uo7G1muJSRHChkYjqABk/pXFfBSzePwJFezLGLrU7q41CZkByzSSsQWJ6tt2j2wBzjNAHeL0paSloAQ1594dG34xeLOdwNpanjt8uNv6Z44+avQDxXn/h3afjD4t2ggC0tQx6/NtHI9BjAx6g0AegilppYL14oLgUAOopAQelLQAUUUmecd6AFooooAKKKKACiiigAooooAKKKKACiiigDzP4h6F4j0/xlpfizw5psHiOaCym02bR7q6FsAsjK3no7AjcuzaRjJV2xWD4S0C90f48pPL4duLRH8KwWV1qNhDs0vz45FIiiBfKhRuCjaOMZJxXc/Ebxtd+Do9GjsNL/ta91W+WxhhMwhVWKs25mPb5ayv+Eq+IOf8AkR7T1/5C8f8A8TQB6GDwefyrzm6hPxC+JkcJfd4f8Lus8iq+VudQIPlhgOohXL4P8bRkdOSfxV8RhBJ5PgeyM207N+sJt3Y4z8vTP/6qw/As3xE8K+HLezuPBdjPqEjPcXtymrx4mnclnb7oJGTgZ6KFHanYZ7Enyg59eKd1ry/V/iD440HS7vUbzwTbfZbWMzSiPV0LFR1wNp5r0TRNRTWNHsb+NDHHdwJOqt1AZQwB/OgC53rzjwV/yWn4l/8AXHSv/RUtej96848Ff8lp+Jf/AFx0r/0VLSEejivKfjrrd9YP4c06TWZvCvhbUZpo9Y8Q20vky2gVAYo1lIIh8xiQZDjAHUEivVs4rz3xf8QbdddvPDQ8Kah4lWO2SW7ENukkChycIwbqcDPTHI96AOB+H/xF1S2+KWj+F4fFA8U+Hbu3uI4r67hVC5gXcPKmAzcS4ZfMyAoGGUndge/g7R/hXj2nanZaRrsms2Xwr1S01N4VtzcQ2yKRGucKADgdcZAzit4/FLVR/wAyJr4/7Zr/AI07DsWPitePe2Wl+HLZ2W41y7W2k8s4kS2A3TOv0G0Z/wBuu2sbWKytIreBBFBCojjRRgKoGABXimleLPENz431LxBqngPX18lfselwgIwSHgvKcHhnOOOwFdcPijqo4/4QTX+v/PJf8aB2PQ6K5PwR8QE8ZXeq2j6TfaNe6c6JLb3yBXIZQysME8EGuspEi15z8WzjxD8L+SP+KpXocf8AMPva9Grzj4tnHiH4XkjP/FUr2z/y4XtAHoq8AV5J8a9XkHiLw7oep6/c+D/CF9Bcy3uvWl39jkFxGYvJt/tGQIg4aVs8Z8rbnnB9b6DH8q8t1/4laf4h1vxH4ZXwbqHiePRbuK0vlNqktv5rQRXCjDZzhJo+o6n2zQBzdp8WPFVn8QfBOjhrW98E6vp1u0fiq+sZI5NSuXR2MaBCqwOVRXCsmMbumMV7lNOlvE8sjiONQWZ3O0KB1JJ6cV41qt7HrXi2w8RXfgLxNJf2QHlx7v3BZd2xzGWwWTfJhsfxt61Prfjy/wDFM/8AZt98OPEFxo4CytMJYwkzhs+UyBslcgHng4xinYdjf8MCf4k6pbeKbyKa10exnl/sa1cFDN96M3UqnqGBPlg9FO7qRj0NOFwa87T4n6nGgVPAevqoHAEKgAdh1rQ8HfExPFfiTUtCm0XUtG1Cxtobt0vowoeOVnVSpB55jbIoCx21cx8Tj/xbzxL/ANg6f/0A10wORXM/E4/8W88S/wDYOn/9ANIRY8CnHgnQP+vCD/0WtYfxm8Oan4q8DXFlpcYu386KS405pfJGoWyuGmtd/wDD5qApk8c84rc8CnHgnQP+vCD/ANFrUXjvxlb+BdB/tO4tri9LzxW0VtagGSWSRwiKMkDqf/10xngXxV1G41r4aLJoGj+JfhRfaxren6Np11FKmn3BuJ5DEsk0Kbh5SNJkrkF+emM19L6dajT7C2tRLNOIY1j824ffI+ABuZj1Y4yT3Nef3HxGvrsIJ/h9rkwjdZFEkKMFdTlWGT1B6HtUw+KWrDj/AIQTxB/37X/GgLGj8YNZ/sH4beIL7Y7+XbHiN9jc8cH8a3vCulHQfDWlaYzI72VrFbs8a7VYqgBIHpkV5D8QvFGv+Lp/DVrH4D18adb6pHfXsqhAwWH50TaT86uw2MOwPeuv/wCFo6qB/wAiJr57/wCrX/GiwWPRKK5P4d/EOz+Ithqs9raXdhLpmoy6ZdW95HsdJowpYe4w6811lIQh61594eJPxi8WZxkWdqoA4+XbkfqTXoJrz7w+R/wuLxYF72lqWyejbRxj0xj9aAIfjp4j1Tw54UsW0+4fTbG71CO01XWYgC+l2bI5e5UHIyGEaZIO3zN3bI81ufjc3w2l8PabperP408NTXZt013UHkuJLp2mMX2SKeNSpki4Yyy/KykKCWyR6n4i+JiWniC/0C18Oanr728Km7NrErRrvGQhyeSVOfTFcR4g146qdKs5Php4rj0vS5N0Wn2ISGzmxgqHiUgMqlQVBGAadhnuinj1pc15YPjRrXI/4Vr4nJHUCOPI/DdR/wALn1r/AKJp4o/78x//ABVIR6nkUY5z36V5s/xinsrrTk1HwfrmnQ3t1FZi4mjXZG8hwpbngZ616SpzmgA6UtFFABRRRQAUUUUAFJnBxRnnFeU/GT9oDR/gve2Ca3HaJaXjWqJcT6pBblTLeQ2zEpIwbagmEhcZG2NwduMkA9VDhhkdKUHNeM/Df9qTwX4/vL61uNa0PRLqK6S1gtrjXbSWW4dhkKFVz83IUhSw3ZALYzU97+0jpem6Do183h/WdTvdc1BrPS9G0hI7i+uItlxIlwyM6BI2S1nYEtj5eCewB7BRXL/Dj4gWnxL8N/2xaafqOlBbma0msdVhWK5glico6OqswBDKehNdRQB5d8YtStLbxZ8MrOW4SO7uvEC+RC33pNkErPj6DmvR8N6H9a8b+N3geDxv8W/hQkt/eabPp9xf3dvcWMmx1f7My/lgmuk/4VZqGf8Ake/En/gSKtFoh8caxPpnxf8Ah1bLqN9Ba3v26Kayihke3mIhyjOwUqpVsYyR96vRgrehrzuX4Z3kGzzPH3iBBIwRRJdABmPQc9/QDrTx8LNQH/M9+JT9bkUahqbvxK+X4feIScj/AEN/5VoeAyB4I8P9B/xLrf8A9FLXmXxE+GOoQ+AvEMg8c+Iyy2UmCbkHB2nB/CrnhL4Y383hLQ5B448RRB7C3IRLngfulpCPXc815x4LP/F6fiV2/c6V/wCipaafhZqJ6ePPEmf+vgGsPRvhTZz69rl/pnxJ1281CRo7e/WDUEkMLRg7VdV+6cMeDzSsKx7LkVwGhMT8YvFfU/8AEvsiM9P+Wn+NVR8LNQx/yPniT8LkVxfh/wCG1/J8WPGEI8ceJAqWtn1uRwdhJbOO/p7U7WHax7t83uaxvGMkcfhnUWuJ7u1hWEs81mGMqAckgL8x4B6Zrlv+FWah/wBD34k5/wCnkVW1PwA+i2M19qHxG1yws4F3S3N1fLFFGPVmbAFMZL8Bb6/vvAkz3TXj266ldR2D3cLxlrQSEQlQ4D7NuMF/m9a9Gy3P3vXoa87h+GV7cQpNF4+8QyQyKGR47lSrKRwQR2NP/wCFW6hx/wAV14k9/wDSB/hQBJ4JI/4Wv8QvXzLLP/gOteig18/+D/hvqMvxL8ewN468RkRPZgZnA/5YA5yB7123/CrNQ5/4rzxL/wCBIpWFY9KzXnXxaVn8Q/DDaCceKVY7RngWF7mon+GN7GjM/j3xGqgFizXQAAHrWZqfwRHiSTSLu48c+I7g6ddC/s5I7wYWXynjDZHUbZX496VhWPWz/TvXk/wmJ/4Wj8bsZ/5GOz/9M+n1oj4WagX48d+JADgAC5HH6V538Nfh3eXXxD+LsSeL9et2g1+0DSR3GDKf7IseW9T/AICiw7HsfxH0KTxT8PfE+jJNdW76hplzarLZ/wCvQvGyho8/xDPHuBXLfA231Gz0jVLa806aztUuF+zXE9sbWS4G0biYskDBGMjrVn/hVt+M58d+JOAeTdcVlaH4asfE/n/2L8VtS1gQcS/YNUim8v8A3tpOPxpgergsQeCK890Y/wDGQvijnj/hHdN/9H3dL/wq2/5x478Sf+BNcFp3w4v3+PXiC2/4TTxCoj8O2DGQXPzMTcXPf2x+poGz6Grmfibz8PPEg9dPn/8AQDXOD4WagR/yPfiXp2uRWV4m+HEFto80OtfErW9PsrwfZTJd6gkIcuCAis2BuPYUrCsegeBD/wAUToHb/QIOv/XNa5H4+n/ildF5/wCZh0vkdR/pSc1FY/B+702wtrODx14lENvGsSBroE7VAAzx6CuL+M3w3vbLwtpbt438ROz67pqKzXAO0m5TBH507BY99yxJ69TXG/F3R31nwFqIEl/HJaAXkaafIySSsmSEyoJIPcd6ov8AC2/Lsf8AhOfEgyegueBVDWPBC+HbFr3VfiXrOlWSMFa5vr9IowScAFmwMnp1pjOu+H1hNpngTQbWWe5uZUsoy8t0SZWYrk7j1zk47V0ILFgDnk55rzbT/h9Jq1lFeWHxF129s5hujuLa8SSNx6hhwasf8Kt1AkAeO/EnX/n4FIVjP+ABxd/FH/sdb7n/ALZW9es5r5x+Dfw0u7mf4iGLxhr1pt8YXwbybjG/93Dyff3r0X/hVl+SB/wnXiXn/p5FKwWPSCa8+8PNn4xeLe3+iWgxnr8v3vxzj/gNc/ZeHLXU9cutHtfiZ4gl1G1GZYFuTkDvg4w2OM7Scd8VZtfgfLa6zeanF458Ti7vEjSUtdgghemBjinYLF/wtn/hc3jvGcfZ7Hv1/d8f5969C+YHPOPSvC/Afwz1DUfGvji9k8Z+IA6XsdmFF0QuxIxjpznnqTXef8KvvQcf8Jn4g/C7PT86AOD0rRvFlp8fZ44La8l0WG5mu7nVbhHRZopUDRwo27YyxsSmMbvlz3Fe9KRivJp9DsbTxHDoUvxE1qPVJV3JbG7fnI4G7oGPUKTk5yBW4vwuvcf8jp4gP/b0aQiL4zsHsPC1qAS1z4gs4wewILPz7fJj8a9DXpXg3xo8AXugeELHWk8W65Pd6ZrWmT24muSybnvIoW3KeoKSuMe+e1e8qNopCHUUUUAFFFFABRRRQB88/tT+GLDxZc6LZa3BeW+kBGcapBp51JYpt3EYtiCoLDkuynhQBjv4X8WINS8V/BL4Jjxlpb6reSWdp/aF1rN79iv4NRtl89vL/dNIJ5GgZBJ91VMqgBpVr74IOeKx9Z8GaJ4ileXU9Ltb+R7ZrRmuIw+6FvvJz2NAHy78EfC2nXnjttR1fT9HsriDTro6RFcW0KpNcXL273ShkVUbypoFH7vA3SSFRgjHjclj4YNn4K8Iz2vgXTm/4SVdSvLOW0u57Ag6dqSec8/yCSEOI1iSPaIyFBLZyf0FufBmiXdpplrNpdrJb6ZIktnG0YxAy/dKehFXJ9DsLmJI5LG2kjQbVV4VIVfQDtQB4t+xk2nw/CO+sdOl054bHxDqkBTSI3S1T/SndRErksFKurDJPDDmveKr2ljBYoUt4IrdSclYUCgn6D6D8qsUAeZePJ4oPjF8OWlkSMYv+XYD/l3PrXd/2jZEn/TbYc/89RVPxR4G0Pxp9l/trTYb/wCylmhaTIaMsMNtIIIyODWMPgt4MGf+JFCM+ksn/wAVVXKuc/8AF2wGtar4BubGwj1aXTtfguJbiKZAbKHDeZKckZGMAgc/MK9F/tGyyc31v9DKtc3/AMKY8GjpokQ/7ayf/FUD4L+Dcf8AIDi/7+yf/FUXC4nxL1Gz/wCFeeIsXlu3+hSdJV9PrVzwVqFn/wAIZ4fBvLdSNOt+DKP+ea1maj8CfA2q6fc2VzoEMttcxtFKhkk+ZCMEfep8HwP8E28MMS6DAFijWNP3knCqAAPvegFK4XOmnvrKS3lja7gcMhUoJgN2R0znivMfhDbxQavq19feH5vDN4oa1iWaSEQGESsVCbGO8nglmGegGAK6z/hS3gwHjQoRnriWTn/x6l/4Ux4NI50OI/WWQ/8As1FwudGNQsweb23P1lFcH4Z1K1Pxj8af6Zb4+yWX/LVeuw9s1sD4LeCxnGhQjJycSSf/ABVQj4F+BRcTXA8O2vnzALJLufcwH3QTu5Ap3C51f9o2f/P7b/jKK5zx9PaT+HZCtnFrksTrKltE8bSKRkB0VyFYrnOCQD60w/BPwURg6DD6f6yT/wCKp3/CmPBvX+w4gfaWT/4qi4XKXwd06Twp8M/D+karcWsOo2sBWZFnDYJYtz74IyOgNdj/AGhZnP8Aptv/AN/RXM/8KV8F7t39hQ59fNk/+Kpf+FLeCwSRoMGf+ukn/wAVRcLmR4O1G1X4qfEEm8twrNZEHzV/591HrXd/2jZYz9ttgPeUVy0XwL8CwXE08fh21jmnx5sis4Z8DAyd3NSD4K+CwMf2FCB6CWT/AOKouFzD+PPhy8+IXww1jQtD1azhu7mPJhklwt0oBJgYqQQHOAcdsg8Gt34Z3Elh8O/DVprDWun6nBYQxXNqJlxFIqAFRyeBj1pD8FvBhOf7Ch4GP9bJ0/76pf8AhS3gsgZ0OI4/6ayf/FUrhc6UalZKcm9t8A5P71a8w+FWoWq/Ev40lrqBVPiKzAJkGD/xKLA+tdX/AMKY8GjpocWf+usn/wAVUUfwO8DxPcOnh63V7hw8rK8gMjBQoLHdyQqqM+gFFwudLPe2U0MiG8tyHBXiYD9e1eS/s/8Ah278B2U2j3B+x6HY28FnZjUDbrckxjbw8QHmJtAwz/MTkkCu6/4Uv4M4/wCJHFx/01k/+KpD8F/BhIzocRx0zLIf/ZqdwudJ/aVlj/j+tv8Av6P8a860vULT/hofxMTdwBT4b0/B81ef9IuveuhPwW8GEAHQoiP+usn/AMVUY+BvgcXbXQ8PW4uGQRtKHk3FQSQud3QZP50XC51H9o2WP+P63/7+r/jXjf7QvhLUPF934YvtHmW8TT3nEtrB5Mokd48RmRJTtKBgCSPmHavQf+FMeDP+gHF/39k/+KoHwZ8Gg8aJGP8AtrJ/8VRcLo2tLvlTS7QXt5ZfbVhQT+TKNnmYG7b7ZziuE+Ot9aP4U0YC7gOPEOmEkSrgf6VH710B+C3gwqAdChI9PNk/+KqG5+BXgW8h8qbw5azRb1k2SM7DcpyrYLdQRwe1FwudY2o2W45vbcexlFcx8R9LsPFXhC/swum6leIpns4roo6LcKD5b4bIyD0pw+DHgzH/ACA4h9JZP/iqQ/Bjwacf8SOL/v7J/wDFUXC5b8FW2n+HvB+jaXHJa2gtLSKNoElXCNtG4dfXNbQ1GzDD/TLc/SUVzQ+C3gvOf7Chz6+ZJ/8AFUn/AApTwVzjQYM/9dJP/iqLhc5X4F6naef8Sw13CpHjS/X5nA5EcPFeoDUrIc/bbcjr/rV5/WuWg+B/ge2Mpi8P28ZllM0hR3G+Q4y7YbknA59ql/4Uv4MGP+JHFj2lkH/s1CYXRwngz4d32g/FTUNeutRszp7zXEyN9vLo4kChVihIAhYAfO4J38elevjUbJcf6bbH6SrXNH4LeDCCP7Chwev72T/4qk/4Up4LOM6DAccD95Jx/wCPUXHdGb8NdUsk8R+Owby3B/tgnHmr/wA809671tWsv+f23H1lWuPi+BXgSCaaaPw3axyzNvkZGcFz6n5uTU//AApjwZ/0A4h9JZP/AIqkTocJ4s+Hl9q3xhsNa0zVrWw8PSS2+o6ntul3XF1CjRKCm3IHl+UMhh9zkGvZV1axAP8Aplvx/wBNV/xrlf8AhTHg3PGhxe/72T/4qm/8KV8FndnQYTu6/vJP/iqA0MX9oPUrSX4X3CpdQsf7U0ngSA/8xK2969RBzXEf8KU8E5Unw/bNtdJAHZ2G5GDKcE4OGUEe4rtwMCkIWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=" alt="" />

那我们求出每一个节点从1~左值的和  和  1~右值的和  他们的差就是这个节点的子树的所有的和(即这棵子树苹果数目)

可以百度下看看树状数组的实现

最后每输入一组数据就进行依次操作就可以了

 #include <cstdio>
#include <cstring>
#include <vector>
#define MAXN 100005
#define mem(a) memset(a, 0, sizeof(a))
using namespace std; int TreeArray[MAXN], Left[MAXN], Right[MAXN], Fork[MAXN];
typedef vector<int> Ve;
vector<Ve>Edge(MAXN);
int N,M;
int key; void init()//初始化数组和
{
mem(Left); mem(Right);
mem(Fork); mem(TreeArray);
for(int i=;i<MAXN;i++)Edge[i].clear();
} void DFS(int node)//为每一个node添加一个左值和右值,表示这个节点所
{
Left[node] = key;
for(int i=;i<Edge[node].size();i++)
{
key+=;
DFS(Edge[node][i]);
}
Right[node] = key;
} int LowBit(int x)//返回的是2^k
{
return x & (x ^ (x-));
} void Edit(int k, int num)//修改节点k,如果是添加一个,代入1,删除一个代入-1
{
while(k <= N)
{
TreeArray[k] += num;
k += LowBit(k);
}
} int GetSum(int k)//得到1...k的和
{
int sum = ;
while(k>=)
{
sum += TreeArray[k];
k -= LowBit(k);
}
return sum;
} void ReadDataAndDo()
{
int a,b;
char ch;
for(int i=;i<N;i++)//输入a,b把边存放在容器里面
{
scanf("%d%d", &a, &b);
Edge[a].push_back(b);
}
key = ; DFS();//为每一个节点对应一个左边界和右边界,他自己就存放在左边界里面,而它的管辖范围就是左边界到右边界
for(int i=;i<=N;i++)
{
Fork[i] = ;//最初每个Fork上都有一个苹果
Edit(i,);//同时更新树状数组的值
}
scanf("%d%*c", &M);
for(int i=;i<M;i++)
{
scanf("%c %d%*c", &ch, &b);
if(ch == 'Q')//b的子树就是[Left[b], right[b]]
{
printf("%d\n", GetSum(Right[b]) - GetSum(Left[b]-));
}
else
{
if(Fork[b]) Edit(Left[b],-);//由于每个节点的编号就是它的左值,所以直接修改左节点
else Edit(Left[b],);
Fork[b] = !Fork[b];//变为相反的状态
}
}
} int main()
{
while(~scanf("%d", &N))
{
init();
ReadDataAndDo();
}
return ;
}
												

POJ3321 Apple Tree (树状数组)的更多相关文章

  1. POJ--3321 Apple Tree(树状数组+dfs(序列))

    Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22613 Accepted: 6875 Descripti ...

  2. POJ3321 Apple Tree(树状数组)

    先做一次dfs求得每个节点为根的子树在树状数组中编号的起始值和结束值,再树状数组做区间查询 与单点更新. #include<cstdio> #include<iostream> ...

  3. POJ 3321 Apple Tree(树状数组)

                                                              Apple Tree Time Limit: 2000MS   Memory Lim ...

  4. POJ 3321:Apple Tree 树状数组

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22131   Accepted: 6715 Descr ...

  5. E - Apple Tree(树状数组+DFS序)

    There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. ...

  6. POJ 3321 Apple Tree 树状数组+DFS

    题意:一棵苹果树有n个结点,编号从1到n,根结点永远是1.该树有n-1条树枝,每条树枝连接两个结点.已知苹果只会结在树的结点处,而且每个结点最多只能结1个苹果.初始时每个结点处都有1个苹果.树的主人接 ...

  7. POJ 3321 Apple Tree (树状数组+dfs序)

    题目链接:http://poj.org/problem?id=3321 给你n个点,n-1条边,1为根节点.给你m条操作,C操作是将x点变反(1变0,0变1),Q操作是询问x节点以及它子树的值之和.初 ...

  8. POJ 3321 Apple Tree 树状数组 第一题

    第一次做树状数组,这个东西还是蛮神奇的,通过一个简单的C数组就可以表示出整个序列的值,并且可以用logN的复杂度进行改值与求和. 这道题目我根本不知道怎么和树状数组扯上的关系,刚开始我想直接按图来遍历 ...

  9. 3321 Apple Tree 树状数组

    LIANJIE:http://poj.org/problem?id=3321 给你一个多叉树,每个叉和叶子节点有一颗苹果.然后给你两个操作,一个是给你C清除某节点上的苹果或者添加(此节点上有苹果则清除 ...

  10. HDU3333 Turing Tree 树状数组+离线处理

    Turing Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. Storm的容错性

    一.简介 如果在消息处理过程中出了一些异常,Storm 会重新安排这个出问题的 topology.Storm 保证一个 topology 永远运行(除非你显式杀掉这个 topology) . 当然,如 ...

  2. windowsUI的总结

    1,MFC 基于VC6.0的微软基础库 2,WPF 做绚丽界面一律用WPF,做一般绚丽界面用WinForm,做windows标准界面用MFC WPF也有个致命缺点,就是要.net framework支 ...

  3. (转载) jQuery 页面加载初始化的方法有3种

    jQuery 页面加载初始化的方法有3种 ,页面在加载的时候都会执行脚本,应该没什么区别,主要看习惯吧,本人觉得第二种方法最好,比较简洁. 第一种: $(document).ready(functio ...

  4. ssl创建自签名的https通信

    ssl协议:ssl在tcp之上,http之下.兼容底层协议.所以推广起来很容易. create a self-signed server certificate -- for test purpose ...

  5. mysql 表空间及索引的查看方法

        CONCAT : concat() 方法用于连接两个或多个数组.    database : 数据库(11张) 数据库,简单来说是本身可视为电子化的文件柜——存储电子文件的处所,用户可以对文件 ...

  6. Java多线程-工具篇-BlockingQueue

    前言: 在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全“传输”数据的问题.通过这些高效并且线程安全的队列 类,为我们快速搭建高质量的多线程程序带来极大的 ...

  7. 更改 input type 的值

    需要实现的效果:一个输入框,当输入框未获得焦点的时候,value 值为 “密码”:当输入框失去焦点的时候,输入内容显示为”*****” <input name=”password” type=” ...

  8. [Java]获取图片高和宽

    通过javax.imageio.ImageIO类中的read()函数读取的图片,存放在类java.awt.image.BufferedImage类中.调用BufferedImage类中的getWidt ...

  9. Java魔法类:sun.misc.Unsafe

    Unsafe类在jdk 源码的多个类中用到,这个类的提供了一些绕开JVM的更底层功能,基于它的实现可以提高效率.但是,它是一把双刃剑:正如它的名字所预示的那样,它是Unsafe的,它所分配的内存需要手 ...

  10. 【转】从外行的视角尝试讲解为什么这回丰田栽了【全文完】【v1.01】

    转自:http://club.tgfcer.com/thread-6817371-1-1.html  [第一部分]背景简介 前几年闹得沸沸扬扬的丰田刹不住事件最近又有新进展.十月底俄克拉荷马的一次庭审 ...