2818: Gcd

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 1566  Solved: 691
[Submit][Status]

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

 #include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std; typedef long long LL;
const int maxn = 1e7+;
bool s[maxn];
int prime[maxn],len = ;
int mu[maxn];
int g[maxn];
int sum1[maxn];
void init()
{
memset(s,true,sizeof(s));
mu[] = ;
for(int i=; i<maxn; i++)
{
if(s[i] == true)
{
prime[++len] = i;
mu[i] = -;
g[i] = ;
}
for(int j=; j<=len && (long long)prime[j]*i<maxn; j++)
{
s[i*prime[j]] = false;
if(i%prime[j]!=)
{
mu[i*prime[j]] = -mu[i];
g[i*prime[j]] = mu[i] - g[i];
}
else
{
mu[i*prime[j]] = ;
g[i*prime[j]] = mu[i];
break;
}
}
}
for(int i=; i<maxn; i++)
sum1[i] = sum1[i-]+g[i];
} int main()
{
int a;
init();
while(scanf("%d",&a)>)
{
LL sum = ;
for(int i=,la = ; i<=a; i = la+)
{
la = a/(a/i);
sum = sum + (long long)(sum1[la] - sum1[i-])*(a/i)*(a/i);
}
printf("%lld\n",sum);
}
return ;
}

spoj

4491. Primes in GCD Table

Problem code: PGCD

Johnny has created a table which encodes the results of some operation -- a function of two arguments. But instead of a boring multiplication table of the sort you learn by heart at prep-school, he has created a GCD (greatest common divisor) table! So he now has a table (of height a and width b), indexed from (1,1) to (a,b), and with the value of field (i,j) equal to gcd(i,j). He wants to know how many times he has used prime numbers when writing the table.

Input

First, t ≤ 10, the number of test cases. Each test case consists of two integers, 1 ≤ a,b < 107.

Output

For each test case write one number - the number of prime numbers Johnny wrote in that test case.

Example

Input:
2
10 10
100 100
Output:
30
2791 一样的题,只不过 GCD(x,y) = 素数 .  1<=x<=a ; 1<=y<=b;
 #include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std; typedef long long LL;
const int maxn = 1e7+;
bool s[maxn];
int prime[maxn],len = ;
int mu[maxn];
int g[maxn];
int sum1[maxn];
void init()
{
memset(s,true,sizeof(s));
mu[] = ;
for(int i=;i<maxn;i++)
{
if(s[i] == true)
{
prime[++len] = i;
mu[i] = -;
g[i] = ;
}
for(int j=;j<=len && (long long)prime[j]*i<maxn;j++)
{
s[i*prime[j]] = false;
if(i%prime[j]!=)
{
mu[i*prime[j]] = -mu[i];
g[i*prime[j]] = mu[i] - g[i];
}
else
{
mu[i*prime[j]] = ;
g[i*prime[j]] = mu[i];
break;
}
}
}
for(int i=;i<maxn;i++)
sum1[i] = sum1[i-]+g[i];
} int main()
{
int T,a,b;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&a,&b);
if(a>b) swap(a,b);
LL sum = ;
for(int i=,la = ;i<=a;i = la+)
{
la = min(a/(a/i),b/(b/i));
sum = sum + (long long)(sum1[la] - sum1[i-])*(a/i)*(b/i);
}
printf("%lld\n",sum);
}
return ;
}

bzoj 2818: Gcd GCD(a,b) = 素数的更多相关文章

  1. BZOJ 2818: Gcd(欧拉函数)

    GCDDescription 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 ...

  2. 【BZOJ 2818】Gcd - 筛法求素数&phi()

    题目描述 给定整数,求且为素数的数对有多少对. 分析 首先筛出所有的素数. 我们考虑枚举素数p,统计满足的个数,等价于统计的个数,即统计以内满足互质的有序数对个数. 不难发现,也就是说,我们只要预处理 ...

  3. 【BZOJ 2818】 GCD

    [题目链接] 点击打开链接 [算法] 线性筛出不大于N的所有素数,枚举gcd(x,y)(设为p),问题转化为求(x,y)=p的个数          设x=x'p, y=y'p,那么有(x,y)=1且 ...

  4. 【BZOJ 2818】gcd 欧拉筛

    枚举小于n的质数,然后再枚举小于n/这个质数的Φ的和,乘2再加1即可.乘2是因为xy互换是另一组解,加1是x==y==1时的一组解.至于求和我们只需处理前缀和就可以啦,注意Φ(1)的值不能包含在前缀和 ...

  5. BZOJ 2818 GCD 素数筛+欧拉函数+前缀和

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对( ...

  6. 【BZOJ】【2818】Gcd

    欧拉函数/莫比乌斯函数 嗯……跟2190很像的一道题,在上道题的基础上我们很容易就想到先求出gcd(x,y)==1的组,然后再让x*=prime[i],y*=prime[i]这样它们的最大公约数就是p ...

  7. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  8. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  9. BZOJ 2818: Gcd

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4443  Solved: 1960[Submit][Status][Discuss ...

随机推荐

  1. Android深入浅出之Binder机制

    一说明 Android系统最常见也是初学者最难搞明白的就是Binder了,很多很多的Service就是通过Binder机制来和客户端通讯交互的.所以搞明白Binder的话,在很大程度上就能理解程序运行 ...

  2. hdu5354 Bipartite Graph

    分治+并查集.假设要求[L,mid]的答案,那么很明显,如果一条边的两个端点都>mid的话或者一个端点>mid一个端点<L,说明询问[L,mid]这个区间中任何一点时候,这一条边都是 ...

  3. ActivityGroup中EditText无法删除的问题

    坑,以前比较少用ActivityGroup,最近使用才发现ActivityGroup中多个Activity中如果都有Edittext是无法后退删除. 网上说有种方法监听dispatchKeyEvent ...

  4. CSS3 filter:drop-shadow滤镜与box-shadow区别应用 抄的

    CSS3 filter:drop-shadow滤镜与box-shadow区别应用 这篇文章发布于 2016年05月18日,星期三,01:07,归类于 css相关. 阅读 5777 次, 今日 12 次 ...

  5. PTPX Power Analysis Flow

    PrimeTime PX工具是PrimeTime工具内的一个feature. PTPX的功耗分析,可以报告出chip,block,cell的各个level的功耗. 使用PTPX可以分析的功耗的方式: ...

  6. PAT乙级 1016. 部分A+B (15) C语言实现

    1016. 部分A+B (15) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 正整数A的“DA(为1位整数)部 ...

  7. USB HID介绍【转】

    本文转载自:http://blog.csdn.net/leo_wonty/article/details/6721214 HID是一种USB通信协议,无需安装驱动就能进行交互,在学习HID之前,先来复 ...

  8. Java的深度克隆和浅度克隆

    说到克隆,其实是个比较简单的概念,跟现实生活正的克隆一样,复制一个一模一样的对象出来.clone()这个方法是从Object继承下来的,一个对象要实现克隆,需要实现一个叫做Cloneable的接口,这 ...

  9. VPS常用工具

    1.命令行工具 putty 在Mac下,可以直接使用超级终端 ssh username@ipaddress 2.可视化上传文件工具 WinSCP 在Mac下,使用 Cyberduck

  10. struts2的两个核心配置文件

    struts2的两个核心配置文件,即:struts.default.xml和struts.properties A,位置:都在struts2-core-version.jar文件中 B,作用,stru ...