bzoj 2818: Gcd GCD(a,b) = 素数
2818: Gcd
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 1566 Solved: 691
[Submit][Status]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
Sample Output
HINT
hint
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std; typedef long long LL;
const int maxn = 1e7+;
bool s[maxn];
int prime[maxn],len = ;
int mu[maxn];
int g[maxn];
int sum1[maxn];
void init()
{
memset(s,true,sizeof(s));
mu[] = ;
for(int i=; i<maxn; i++)
{
if(s[i] == true)
{
prime[++len] = i;
mu[i] = -;
g[i] = ;
}
for(int j=; j<=len && (long long)prime[j]*i<maxn; j++)
{
s[i*prime[j]] = false;
if(i%prime[j]!=)
{
mu[i*prime[j]] = -mu[i];
g[i*prime[j]] = mu[i] - g[i];
}
else
{
mu[i*prime[j]] = ;
g[i*prime[j]] = mu[i];
break;
}
}
}
for(int i=; i<maxn; i++)
sum1[i] = sum1[i-]+g[i];
} int main()
{
int a;
init();
while(scanf("%d",&a)>)
{
LL sum = ;
for(int i=,la = ; i<=a; i = la+)
{
la = a/(a/i);
sum = sum + (long long)(sum1[la] - sum1[i-])*(a/i)*(a/i);
}
printf("%lld\n",sum);
}
return ;
}
spoj
4491. Primes in GCD TableProblem code: PGCD |
Johnny has created a table which encodes the results of some operation -- a function of two arguments. But instead of a boring multiplication table of the sort you learn by heart at prep-school, he has created a GCD (greatest common divisor) table! So he now has a table (of height a and width b), indexed from (1,1) to (a,b), and with the value of field (i,j) equal to gcd(i,j). He wants to know how many times he has used prime numbers when writing the table.
Input
First, t ≤ 10, the number of test cases. Each test case consists of two integers, 1 ≤ a,b < 107.
Output
For each test case write one number - the number of prime numbers Johnny wrote in that test case.
Example
Input:
2
10 10
100 100
Output:
30
2791 一样的题,只不过 GCD(x,y) = 素数 . 1<=x<=a ; 1<=y<=b;
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std; typedef long long LL;
const int maxn = 1e7+;
bool s[maxn];
int prime[maxn],len = ;
int mu[maxn];
int g[maxn];
int sum1[maxn];
void init()
{
memset(s,true,sizeof(s));
mu[] = ;
for(int i=;i<maxn;i++)
{
if(s[i] == true)
{
prime[++len] = i;
mu[i] = -;
g[i] = ;
}
for(int j=;j<=len && (long long)prime[j]*i<maxn;j++)
{
s[i*prime[j]] = false;
if(i%prime[j]!=)
{
mu[i*prime[j]] = -mu[i];
g[i*prime[j]] = mu[i] - g[i];
}
else
{
mu[i*prime[j]] = ;
g[i*prime[j]] = mu[i];
break;
}
}
}
for(int i=;i<maxn;i++)
sum1[i] = sum1[i-]+g[i];
} int main()
{
int T,a,b;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&a,&b);
if(a>b) swap(a,b);
LL sum = ;
for(int i=,la = ;i<=a;i = la+)
{
la = min(a/(a/i),b/(b/i));
sum = sum + (long long)(sum1[la] - sum1[i-])*(a/i)*(b/i);
}
printf("%lld\n",sum);
}
return ;
}
bzoj 2818: Gcd GCD(a,b) = 素数的更多相关文章
- BZOJ 2818: Gcd(欧拉函数)
GCDDescription 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 ...
- 【BZOJ 2818】Gcd - 筛法求素数&phi()
题目描述 给定整数,求且为素数的数对有多少对. 分析 首先筛出所有的素数. 我们考虑枚举素数p,统计满足的个数,等价于统计的个数,即统计以内满足互质的有序数对个数. 不难发现,也就是说,我们只要预处理 ...
- 【BZOJ 2818】 GCD
[题目链接] 点击打开链接 [算法] 线性筛出不大于N的所有素数,枚举gcd(x,y)(设为p),问题转化为求(x,y)=p的个数 设x=x'p, y=y'p,那么有(x,y)=1且 ...
- 【BZOJ 2818】gcd 欧拉筛
枚举小于n的质数,然后再枚举小于n/这个质数的Φ的和,乘2再加1即可.乘2是因为xy互换是另一组解,加1是x==y==1时的一组解.至于求和我们只需处理前缀和就可以啦,注意Φ(1)的值不能包含在前缀和 ...
- BZOJ 2818 GCD 素数筛+欧拉函数+前缀和
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对( ...
- 【BZOJ】【2818】Gcd
欧拉函数/莫比乌斯函数 嗯……跟2190很像的一道题,在上道题的基础上我们很容易就想到先求出gcd(x,y)==1的组,然后再让x*=prime[i],y*=prime[i]这样它们的最大公约数就是p ...
- bzoj 2818 GCD 数论 欧拉函数
bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- BZOJ 2818: Gcd
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4443 Solved: 1960[Submit][Status][Discuss ...
随机推荐
- break和continue的区别以及标签label的使用
break表示直接跳出当前循环,break只能运用于switch--case语句以及循环之中 continue则表示跳出当次循环,继续执行下一次循环 label标签则可以选择break,或者conti ...
- [reprint]malloc与calloc的区别
[http://blog.163.com/crazy20070501@126/] 转自某自由人的博客: malloc与calloc的区别 函数malloc()和calloc()都可以用来动态分配内存空 ...
- <构建之法>之一至二章
身在大学,却想起了在高中的生活和初中的生活,特别是初中的生活,为什么这么说呢!因为<构建之法>,看了其中的两章的内容,为什么想到了初中和高中的生活呢,因为在高中和初三的时候看的最多的就是课 ...
- 夺命雷公狗ThinkPHP项目之----企业网站14之文章修改页的完成
这个其实也是挺容易的,我们思路先将栏目页给遍历出来: 这里用了catTree的方法,因为我们要对遍历出来的数据进行排序的,然后来到前端进行完成列表: <!doctype html> < ...
- PAT乙级 1030. 完美数列(25)
1030. 完美数列(25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CAO, Peng 给定一个正整数数列,和正整数p,设这 ...
- ThinkPHP讲解(八)——显示、修改、添加、删除
一.显示数据 <h1>主页面</h1> <table width="100%" border="1" cellpadding=&q ...
- T-sql语句中GO的作用及语法【转】
1. 作用: 向 SQL Server 实用工具发出一批 Transact-SQL 语句结束的信号.2. 语法:一批 Transact-SQL 语句GO如Select 1Select 2Select ...
- 鸟哥的linux私房菜学习记录之程序管理和SElinux初探
process是进程的意思也就是说进程是正在运行的程序 将后台程序的错误信息等等输出到某个文档 终端关闭后会停止运行,如果想终端关闭后继续运行可以使用nohup命令,man nohup.
- 去除冗余 – 精简您的CSS样式代码
讲讲常见的一些没有必要使用CSS代码情况,而这些不起作用可以去掉的CSS代码可能是我们经常忽视的.越是对CSS理解不够,越容易出现这些问题. 二.一些常见不必要CSS样式 1.与默认CSS样式一致 我 ...
- <c:if>条件判断 和 取值做乘法运算
http://www.yiibai.com/jstl/jstl_core_if_tag.html <td> ${log.etdhHandleTime }<span> < ...