Pipe
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 9723   Accepted: 2964

Description

The GX Light Pipeline Company started to prepare bent pipes for the new transgalactic light pipeline. During the design phase of the new pipe shape the company ran into the problem of determining how far the light can reach inside
each component of the pipe. Note that the material which the pipe is made from is not transparent and not light reflecting.





Each pipe component consists of many straight pipes connected tightly together. For the programming purposes, the company developed the description of each component as a sequence of points [x1; y1], [x2; y2], . . ., [xn; yn], where x1 < x2 < . . . xn . These
are the upper points of the pipe contour. The bottom points of the pipe contour consist of points with y-coordinate decreased by 1. To each upper point [xi; yi] there is a corresponding bottom point [xi; (yi)-1] (see picture above). The company wants to find,
for each pipe component, the point with maximal x-coordinate that the light will reach. The light is emitted by a segment source with endpoints [x1; (y1)-1] and [x1; y1] (endpoints are emitting light too). Assume that the light is not bent at the pipe bent
points and the bent points do not stop the light beam.

Input

The input file contains several blocks each describing one pipe component. Each block starts with the number of bent points 2 <= n <= 20 on separate line. Each of the next n lines contains a pair of real values xi, yi separated
by space. The last block is denoted with n = 0.

Output

The output file contains lines corresponding to blocks in input file. To each block in the input file there is one line in the output file. Each such line contains either a real value, written with precision of two decimal places,
or the message Through all the pipe.. The real value is the desired maximal x-coordinate of the point where the light can reach from the source for corresponding pipe component. If this value equals to xn, then the message Through all the pipe. will appear
in the output file.

Sample Input

4
0 1
2 2
4 1
6 4
6
0 1
2 -0.6
5 -4.45
7 -5.57
12 -10.8
17 -16.55
0

Sample Output

4.67
Through all the pipe.

Source

Central Europe 1995

题意:光线从(x0,uy0),(x0,y0-1)之间射入,向四面八方直线传播,问光线最远能射到哪里,或者能穿透整个通道.

思路:如果一条直线没有碰到一个端点,不是最优的,可以通过平移使之变成最优的,如果只碰到一个端点,也可以通过旋转使之交到两个端点,所以现在的任务就是枚举端点,找最大值

黑书(P359)

#include <set>
#include <map>
#include <list>
#include <stack>
#include <cmath>
#include <vector>
#include <queue>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const double eps = 1e-5;
const int INF = 0x3f3f3f3f;
struct node
{
double x;
double y;
}up[21],down[21]; //折点
int n;
int dblcmp(double p)//判断值的正负
{
if(fabs(p)<=eps)
{
return 0;
}
return p<0?-1:1;
} double det(double x1,double y1,double x2,double y2)//计算叉积
{
return x1*y2-x2*y1;
} double cross(node a,node b,node c)//计算a,b,c的有向面积;
{
return det(b.x-a.x,b.y-a.y,c.x-a.x,c.y-a.y);
} bool check(node a,node b,node c,node d)//判断线段ab与线段cd是否相交;
{
return (dblcmp(cross(a,b,c))*dblcmp(cross(a,b,d)))<=0;
} double Intersect(node a,node b,node c,node d)//计算相交的点的交点
{
double area1=cross(a,b,c);
double area2=cross(a,b,d);
int c1=dblcmp(area1);
int c2=dblcmp(area2);
if(c1*c2<0)//如果小于零,规范相交
{
return (area2*c.x-area1*d.x)/(area2-area1);//计算交点的公式
}
else if(c1*c2==0)//和端点相交,判断和哪一个端点相交
{
if(c1==0)
{
return c.x;
}
else if(c2==0)
{
return d.x;
}
}
return -INF;
}
int main()
{
while(scanf("%d",&n)&&n)
{
for(int i=1; i<=n; i++)
{
scanf("%lf %lf",&up[i].x,&up[i].y);//上端点
down[i].x=up[i].x;
down[i].y=up[i].y-1;//下端点
}
bool flag=false;
double Max_x=-INF;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
if(i!=j)
{
int k;
for(k=1; k<=n; k++)
{
if(!check(up[i],down[j],up[k],down[k]))//计算光线的相交的管壁
{
break;
}
}
if(k>n)//光线通过了整个管道
{
flag=true;
break;
}
if(k!=1)//注意判断,1的时候不用处理,否则会WA;
{
double tmp=Intersect(up[i],down[j],up[k],up[k-1]);
if(Max_x<tmp)
{
Max_x=tmp;
}
tmp=Intersect(up[i],down[j],down[k],down[k-1]);
if(Max_x<tmp)
{
Max_x=tmp;
}
}
}
}
if(flag)
{
break;
}
}
if(flag)
{
printf("Through all the pipe.\n");
}
else
{
printf("%.2f\n",Max_x);//输出的是最大的x坐标,不是长度
}
}
return 0;
}

Pipe(点积叉积的应用POJ1039)的更多相关文章

  1. 向量 dot cross product 点积叉积 几何意义

    向量 dot cross product 点积叉积 几何意义 有向量 a b 点积 a * b = |a| * |b| * cosθ 几何意义: 1. a * b == 0,则 a ⊥ b 2. a ...

  2. uva 11178二维几何(点与直线、点积叉积)

    Problem D Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states tha ...

  3. [转] POJ计算几何

    转自:http://blog.csdn.net/tyger/article/details/4480029 计算几何题的特点与做题要领:1.大部分不会很难,少部分题目思路很巧妙2.做计算几何题目,模板 ...

  4. 【转】POJ题目分类

    初级:基本算法:枚举:1753 2965贪心:1328 2109 2586构造:3295模拟:1068 2632 1573 2993 2996 图:最短路径:1860 3259 1062 2253 1 ...

  5. ACM训练计划step 2 [非原创]

    (Step2-500题)POJ训练计划+SGU 经过Step1-500题训练,接下来可以开始Step2-500题,包括POJ训练计划的298题和SGU前两章200题.需要1-1年半时间继续提高解决问题 ...

  6. ACM计算几何题目推荐

    //第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...

  7. POJ训练计划

    POJ训练计划 Step1-500题 UVaOJ+算法竞赛入门经典+挑战编程+USACO 请见:http://acm.sdut.edu.cn/bbs/read.php?tid=5321 一.POJ训练 ...

  8. [知识点]计算几何I——基础知识与多边形面积

    // 此博文为迁移而来,写于2015年4月9日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vxaq.html 1.前言 ...

  9. 计算几何 : 凸包学习笔记 --- Graham 扫描法

    凸包 (只针对二维平面内的凸包) 一.定义 简单的说,在一个二维平面内有n个点的集合S,现在要你选择一个点集C,C中的点构成一个凸多边形G,使得S集合的所有点要么在G内,要么在G上,并且保证这个凸多边 ...

随机推荐

  1. CSS文档流与块级元素和内联元素

    CSS文档流与块级元素(block).内联元素(inline),之前翻阅不少书籍,看过不少文章, 看到所多的是零碎的CSS布局基本知识,比较表面.看过O'Reilly的<CSS权威指南>, ...

  2. SC-控制Windows服务的命令

    Windows自带一个控制服务的命令-SC,下面用Terminal Service做个简单例子: 查询Terminal Service的配置 C:\Users\jackie.chen>sc qc ...

  3. 当As3遇见Swift(三)

    类 As3 Swift中似乎没有包,包路径的概念.因而显得简洁的多. package { public class ShuaiGe { } } Swift类 class ShuaiGe{ } 类的构造 ...

  4. VS的基本学习

    2016.4.11  下午 一.数据类型 1.基本数据类型 注:字节:例{10221021  8位数为一个字节    8b=1B} 1).整形(整数) ① short(比Int短   Int16){2 ...

  5. poj: 3006

    简单题 #include <iostream> #include <stdio.h> #include <string> #include <stack> ...

  6. android 添加背景音乐

    MediaPlayer mediaPlayer=MediaPlayer.create(MainActivity.this,R.raw.qiji); mediaPlayer.start();

  7. BeanFactory

            Spring容器,最基本的接口就是BeanFactory 负责创建,配置,管理bean 它有一个子接口ApplicationContext并将功能扩展.         理论上bean ...

  8. xsd与xsl文件的区别

    请问xsd与xsl文件的区别在哪里呢?   我刚学xml,一开始用xmlspy学的,然后生成了一个xsd的文件,但在网上下的源程序是有一个xsl文件的,很不明之间有什么区别的,为什么别人的程序不用xs ...

  9. MyEclipse启动失败

    日志的一部分: !SESSION 2014-09-24 11:47:03.156 -----------------------------------------------eclipse.buil ...

  10. 关于linux的systemd的一些事

    1. 输出运行失败的单元: systemctl --failed 2. 所有的单元文件存放在 /usr/lib/systemd/system/ 和 /etc/systemd/system/ 这两个目录 ...