opencl gauss filter优化(一)
Platform: LG G3, Adreno 330 ,img size 3264x2448
C code |
neon |
GPU |
300 |
60 |
29 |
单位:ms
1.
目前按如下行列分解的方式最快29ms,Horizontal
kernel
globalWorksize[1] = {height+256-height%256};Vertical kernel
globalWorksize2[1] = {width+256-width%256};
localWorksize2[]
= {64}; localWorksize2 手动设为64时最快。
Porfile的结果为:Horizontal
kernel 的wait
time 有11ms,实际rum
time 18ms.
这个wait
time是什么呢?注释掉Horizontal
kernel中的
vstore16(convert_uchar16(sum>>(ushort)8),0,pOutLine+j)
; 则wait
time只有0.x
ms.并且
localWorksize
越小wait
time越长,为1时达到200ms,16时20ms.
难道是写内存等待时间,没有足够的ALU指令隐藏访存延时?写内存后进入下一个for循环,马上又读内存,所以没有ALU指令隐藏这个延时。然而Horizontal
kernel的profile结果实际run
time只有0.x
ms,所有时间基本都是在wait.(更正:注释掉vstore16后,sum的计算被优化掉了,0.x
ms是读内存的时间)
- __kernel void ImageGaussianFilterHorizontal(__global const uchar* restrict source, // Source image
- __global uchar* restrict dest, // Intermediate dest image
- const int imgWidth , // Image width
- const int imgHeight)
- {
- const int y = get_global_id();
- if(y>=(imgHeight))
- return;
- const uchar m_nRightShiftNum = ;
- const uchar Rounding = ( << (m_nRightShiftNum - ));
- const uchar m_nFilter[] = {,,,,,,,,,,};
- const int s = ;
- const int nStart = ;
- const int nWidth = imgWidth;
- __global const uchar* pInLine = source + y*nWidth;
- __global uchar* pOutLine = dest + y*nWidth;
- int j;
- for(j = ; j < nStart; j ++)
- {
- ushort sum = ;
- for (int m = ; m<s / ; m++)
- {
- int k1 = (j + m - nStart);
- k1 = k1< ? -k1 : k1;
- int k2 = (j + nStart - m );
- sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
- }
- sum += pInLine[j] * m_nFilter[s / ];
- sum = (sum + Rounding) >> ;
- pOutLine[j] = (uchar)clamp(sum,(ushort),(ushort));
- }
- for ( ; (j+)<= (nWidth - nStart); j+=)
- {
- #define GAUSSIAN_LINE_NEON(m) \
- sum += ( convert_ushort16(vload16(,pInLine+j-nStart+m))* m_nFilter[m] );
- ushort16 sum = (convert_ushort16(vload16(,pInLine+j-nStart)) * m_nFilter[]);
- GAUSSIAN_LINE_NEON();
- GAUSSIAN_LINE_NEON();
- GAUSSIAN_LINE_NEON();
- GAUSSIAN_LINE_NEON();
- GAUSSIAN_LINE_NEON();
- GAUSSIAN_LINE_NEON();
- GAUSSIAN_LINE_NEON();
- GAUSSIAN_LINE_NEON();
- GAUSSIAN_LINE_NEON();
- GAUSSIAN_LINE_NEON();
- sum += (ushort)Rounding;
- vstore16(convert_uchar16(sum>>(ushort)),,pOutLine+j) ;
- }
- for( ; j < nWidth; j ++)
- {
- ushort sum = ;
- for (int m = ; m<s / ; m++)
- {
- int k1 = (j + m - nStart);
- int k2 = (j + nStart - m );
- k2 = k2 >= nWidth ? * nWidth - - k2 : k2;
- sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
- }
- sum += pInLine[j] * m_nFilter[s / ];
- sum = (sum + Rounding) >> m_nRightShiftNum;
- pOutLine[j] = (uchar)clamp(sum,(ushort),(ushort));
- }
- }
- __kernel void ImageGaussianFilterVertical( __global uchar* restrict source, // Intermediate image processed by ImageGaussianFilterHorizontal()
- __global uchar* restrict dest, // Final destination image
- const int imgWidth,
- const int imgHeight
- )
- {
- const int x = get_global_id();
- if(x>=(imgWidth))
- return;
- const int x_offset = x;
- const int s = ;
- const int nStart = s / ;
- const int m_nRightShiftNum = ;
- const int Rounding = ( << (m_nRightShiftNum - ));
- const uchar m_nFilter[] = {,,,,,,,,,,};
- int y;
- // mem_fence(CLK_LOCAL_MEM_FENCE);
- ushort lines[];
- lines[nStart] = (ushort)( source[x_offset] );
- for(y=;y<=nStart;y++)
- {
- lines[nStart+y] = (ushort)( source[y*imgWidth+x_offset] );
- lines[nStart-y] = lines[nStart+y];
- }
- for(y=;y<(imgHeight-nStart-);)
- {
- ushort sum = lines[nStart] * m_nFilter[nStart];
- #define GaussianTwoLines(m) \
- sum += ( (lines[m] + lines[s--m])*m_nFilter[m] );
- GaussianTwoLines()
- GaussianTwoLines()
- GaussianTwoLines()
- GaussianTwoLines()
- GaussianTwoLines()
- sum += (ushort)Rounding;
- dest[y*imgWidth+x_offset] = (uchar)(sum>>(ushort));
- y++;
- for(int i = ; i<s-; i++) lines[i] = lines[i+];
- lines[s-] = (ushort)( source[(y+nStart)*imgWidth+x_offset] );
- }
- for(y=imgHeight-nStart-;y<(imgHeight-);)
- {
- ushort sum = lines[nStart] * m_nFilter[nStart];
- GaussianTwoLines()
- GaussianTwoLines()
- GaussianTwoLines()
- GaussianTwoLines()
- GaussianTwoLines()
- sum += (ushort)Rounding;
- dest[y*imgWidth+x_offset] = (uchar)(sum>>(ushort));
- y++;
- for(int i = ; i<s-; i++) {
- lines[i] = lines[i+];
- }
- lines[s-] = lines[(imgHeight-y)*-] ; //
- }
- //last y=imgHeight-1
- ushort sum = lines[nStart] * m_nFilter[nStart];
- GaussianTwoLines()
- GaussianTwoLines()
- GaussianTwoLines()
- GaussianTwoLines()
- GaussianTwoLines()
- sum += (ushort)Rounding;
- dest[y*imgWidth+x_offset] = (uchar)(sum>>(ushort));
- }
kernel
2.Horizontal kernel改进,预先load 2x16个所需的pixel,计算时从中提取,这样每次循环只需读一次内存。需要26ms,wait time 8ms.
- ushort16 line0 = convert_ushort16(vload16(,pInLine+j-nStart));
- for ( ; (j+)<= (nWidth - nStart); j+=)
- {
- ushort16 line1 = convert_ushort16(vload16(,pInLine+j-nStart+));
- ushort16 temp0;
- ushort16 temp1;
- temp0 = line0;
- temp1.s0123 = line0.sabcd;
- temp1.s45 = line0.sef;
- temp1.s67 = line1.s01;
- temp1.s89abcdef = line1.s23456789;
- ushort16 sum = ( temp0 + temp1 ) * m_nFilter[];
- temp0.s0123456789abcdef = temp0.s123456789abcdeff;
- temp0.sf = line1.s0;
- temp1.s0123456789abcdef = temp1.s00123456789abcde;
- temp1.s0 = line0.s9;
- sum += ( temp0 + temp1 ) * m_nFilter[];
- temp0.s0123456789abcdef = temp0.s123456789abcdeff;
- temp0.sf = line1.s1;
- temp1.s0123456789abcdef = temp1.s00123456789abcde;
- temp1.s0 = line0.s8;
- sum += ( temp0 + temp1 ) * m_nFilter[];
- temp0.s0123456789abcdef = temp0.s123456789abcdeff;
- temp0.sf = line1.s2;
- temp1.s0123456789abcdef = temp1.s00123456789abcde;
- temp1.s0 = line0.s7;
- sum += ( temp0 + temp1 ) * m_nFilter[];
- temp0.s0123456789abcdef = temp0.s123456789abcdeff;
- temp0.sf = line1.s3;
- temp1.s0123456789abcdef = temp1.s00123456789abcde;
- temp1.s0 = line0.s6;
- sum += ( temp0 + temp1 ) * m_nFilter[];
- temp0.s0123456789abcdef = temp0.s123456789abcdeff;
- temp0.sf = line1.s4;
- sum += ( temp0 ) * m_nFilter[];
- sum += (ushort)Rounding;
- line0 = line1;
- vstore16(convert_uchar16(sum>>(ushort)),,pOutLine+j) ;
- }
3.不计算,只读写内存测试。那么wait time 3.2 ms,run time 18.2 ms.说明Horizontal kernel 耗时的极限也需3.2ms. 但是只是注释掉vstore16,还保留了读和计算,反而wait time还只有0.x ms,这又是为何?是读几乎没有wait,3.2ms都是写的wait time? (更正:注释掉vstore16后,sum的计算被优化掉了,0.x ms是读内存的时间)
a.再次测试,只有读wait time 0.xms ,只有写wait time 3.2ms.写比读的周期长.
for ( ; (j+16)<= (nWidth - nStart); j+=16)
{
ushort16 line1 = convert_ushort16(vload16(0,pInLine+j-nStart+16));
vstore16(0,0,pOutLine+j) ;
}
b.另外发现使用*((__global uint4*)(pOutLine+j)) = as_uint4(result);比vstore16快,wait time 2.5ms.高通 80-N8592-1_L_OpenCL_Programming_Guide 中提到:
Vectorized load/store of a larger data type is more optimal than a small data type; e.g., a load of uint2* is more optimal than uchar8* .
For optimal SP to L2 bandwidth performance, align read access to a 32-bit address and write access to a 128-bit address.
c.原来写的内存没有对齐,使用*((__global uint4*)(pOutLine+j-5)) = as_uint4(result);wait time 1.9ms.
d.最后加上sum计算,采用的Horizontal kernel如下,localWorksize[] = {64};时时间最少,需要23ms,wait time 4.7ms , localWorksize = 128时,wait 6ms.
并且使用__attribute__((work_group_size_hint(64,1,1))) ,耗时22ms.
- __kernel __attribute__((work_group_size_hint(,,)))
- void ImageGaussianFilterHorizontal(__global const uchar* restrict source, // Source image
- __global uchar* restrict dest, // Intermediate dest image
- const int imgWidth , // Image width
- const int imgHeight)
- {
- const int y = get_global_id();
- if(y>=(imgHeight))
- return;
- const uchar m_nRightShiftNum = ;
- const uchar Rounding = ( << (m_nRightShiftNum - ));
- const uchar m_nFilter[] = {,,,,,,,,,,};
- const int s = ;
- const int nStart = ;
- const int nWidth = imgWidth;
- __global const uchar* pInLine = source + y*nWidth;
- __global uchar* pOutLine = dest + y*nWidth;
- int j;
- uchar temp[];
- for(j = ; j < nStart; j ++)
- {
- ushort sum = ;
- for (int m = ; m<s / ; m++)
- {
- int k1 = (j + m - nStart);
- k1 = k1< ? -k1 : k1;
- int k2 = (j + nStart - m );
- sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
- }
- sum += pInLine[j] * m_nFilter[s / ];
- sum = (sum + Rounding) >> ;
- temp[j] = (uchar)clamp(sum,(ushort),(ushort));
- }
- uchar16 result,pre_result;
- pre_result.sbcde = (uchar4)(temp[],temp[],temp[],temp[]);
- pre_result.sf = temp[];
- ushort16 line0 = convert_ushort16(vload16(,pInLine+j-nStart));
- for ( ; (j+)<= (nWidth - nStart); j+=)
- {
- //prefetch(pInLine+j-nStart,32); //无变化
- ushort16 line1 = convert_ushort16(vload16(,pInLine+j-nStart+));
- ushort16 temp0;
- ushort16 temp1;
- temp0 = line0;
- temp1.s0123 = line0.sabcd;
- temp1.s45 = line0.sef;
- temp1.s67 = line1.s01;
- temp1.s89abcdef = line1.s23456789;
- ushort16 sum = ( temp0 + temp1 ) * m_nFilter[];
- temp0.s0123456789abcdef = temp0.s123456789abcdeff;
- temp0.sf = line1.s0;
- temp1.s0123456789abcdef = temp1.s00123456789abcde;
- temp1.s0 = line0.s9;
- sum += ( temp0 + temp1 ) * m_nFilter[];
- temp0.s0123456789abcdef = temp0.s123456789abcdeff;
- temp0.sf = line1.s1;
- temp1.s0123456789abcdef = temp1.s00123456789abcde;
- temp1.s0 = line0.s8;
- sum += ( temp0 + temp1 ) * m_nFilter[];
- temp0.s0123456789abcdef = temp0.s123456789abcdeff;
- temp0.sf = line1.s2;
- temp1.s0123456789abcdef = temp1.s00123456789abcde;
- temp1.s0 = line0.s7;
- sum += ( temp0 + temp1 ) * m_nFilter[];
- temp0.s0123456789abcdef = temp0.s123456789abcdeff;
- temp0.sf = line1.s3;
- temp1.s0123456789abcdef = temp1.s00123456789abcde;
- temp1.s0 = line0.s6;
- sum += ( temp0 + temp1 ) * m_nFilter[];
- temp0.s0123456789abcdef = temp0.s123456789abcdeff;
- temp0.sf = line1.s4;
- sum += ( temp0 ) * m_nFilter[];
- sum += (ushort)Rounding;
- line0 = line1;
- result.s0123 = pre_result.sbcde;
- result.s4 = pre_result.sf;
- pre_result = convert_uchar16(sum>>(ushort)) ;
- result.s5 = pre_result.s0;
- result.s67 = pre_result.s12;
- result.s89abcdef = pre_result.s3456789a;
- *( (__global uint4*)(pOutLine+j-) ) = (as_uint4)(result) ;
- }
- *( (__global uint*)(pOutLine+j-) ) = (as_uint)(pre_result.sbcde);//last 5 bytes
- pOutLine[j-] = pre_result.sf;
- for( ; j < nWidth; j ++)
- {
- ushort sum = ;
- for (int m = ; m<s / ; m++)
- {
- int k1 = (j + m - nStart);
- int k2 = (j + nStart - m );
- k2 = k2 >= nWidth ? * nWidth - - k2 : k2;
- sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
- }
- sum += pInLine[j] * m_nFilter[s / ];
- sum = (sum + Rounding) >> m_nRightShiftNum;
- pOutLine[j] = (uchar)clamp(sum,(ushort),(ushort));
- }
- }
opencl gauss filter优化(一)的更多相关文章
- opencl gauss filter优化(三)
1.根据前两次的最终结果: 使用普通buffer,Horizontal 5ms, Vertical 17 ms 使用image buffer:Horizontal 9.4ms, Vertical 6. ...
- opencl gauss filter优化(二)
1.buffer使用image的方式:Horizontal 与 Vertical 算法一样, 共需30ms,wait time 19ms. const sampler_t sampler = CLK_ ...
- Anisotropic gauss filter
最近一直在做版面分析,其中文本行检测方面,许多文章涉及到了Anigauss也就是各向异性高斯滤波. 顾名思义,简单的理解就是参数不同的二维高斯滤波. 在文章Fast Anisotropic Gauss ...
- OpenCL Kernel设计优化
使用Intel® FPGA SDK for OpenCL™ 离线编译器,不需要调整kernel代码便可以将其最佳的适应于固定的硬件设备,而是离线编译器会根据kernel的要求自适应调整硬件的结构. 通 ...
- FILTER优化
explain plan for select a.* from fxqd_list_20131115_new_100 a where (acct_no, oper_no, seqno, trans_ ...
- 二维高斯滤波器(gauss filter)的实现
我们以一个二维矩阵表示二元高斯滤波器,显然此二维矩阵的具体形式仅于其形状(shape)有关: def gauss_filter(kernel_shape): 为实现二维高斯滤波器,需要首先定义二元高斯 ...
- 一次性能优化将filter转换
有一条SQL性能有问题,在运行计划中发现filter.遇到它要小心了,类似于nestloop.我曾经的blog对它有研究探索运行计划中filter的原理.用exists极易引起filter. 优化前: ...
- 安卓平台ARM Mali OpenCL例子-灰度转换(转)
手头一块RK3288的板子,在板子上测试了一张1080p的彩色图灰度转换的OpenCL例子.OpenCL没有任何优化.例子请移步这里. 该例子是编译成安卓平台下的可执行程序. 进入jni文件夹,进行如 ...
- OpenCV、OpenCL、OpenGL、OpenPCL
对于几个开源库的总结,作为标记,以前看过,现在开始重视起来!更详细资料请移步 开源中国社区! 涉及:OpenCV,OpenCL,OpenGL,OpenPCL 截止到目前: OpenGL的最新版本为4. ...
随机推荐
- CurrentHashMap的实现原理
转载:http://wiki.jikexueyuan.com/project/java-collection/concurrenthashmap.html 概述 我们在之前的博文中了解到关于 Hash ...
- git总结
1.先画个图,先对git的操作有个直观了解 2.分析下git中文件是怎么存储的 正如下面所示git存储不是每次更改就会产生一个新的文件,而是产生一个版本,这个版本对应着记录每个文件的不同情况 具体的存 ...
- nn package
1.nn模块是神经网络模块 2.父类module,子类Sequential, Parallel和Concat 3.Linear:做线性变换 4.criterion 这个模块包含了各式各样的训练时的损失 ...
- 2016年11月22日 星期二 --出埃及记 Exodus 20:13
2016年11月22日 星期二 --出埃及记 Exodus 20:13 "You shall not murder.不可杀人.
- CentOS 6.3下源码安装LAMP(Linux+Apache+Mysql+Php)环境
一.简介 什么是LAMP LAMP是一种Web网络应用和开发环境,是Linux, Apache, MySQL, Php/Perl的缩写,每一个字母代表了一个组件,每个组件就其本身而言都是在它所代 ...
- 我的android学习经历18
今天主要学了几个android控件和使用两个适配器 ListView DatePicker和TimePicker GridView 适配器:SimpleAdapter和ArrayAdapter 都是常 ...
- HDU 5046 Airport(dlx)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5046 题意:n个城市修建m个机场,使得每个城市到最近进场的最大值最小. 思路:二分+dlx搜索判定. ...
- 只用css来美化的上传表单按钮(抄的迅雷的)
<!DOCTYPE html><html><head><meta charset="utf-8" /><title>文件 ...
- 用PyAIML开发简单的对话机器人
AIML files are a subset of Extensible Mark-up Language (XML) that can store different text patterns ...
- Populating Display Item Value On Query In Oracle Forms
Write Post-Query trigger for the block you want to fetch the field value for display item.ExampleBeg ...