HMM隐马尔科夫模型
这是一个非常重要的模型,凡是学统计学、机器学习、数据挖掘的人都应该彻底搞懂。
python包:
https://github.com/hmmlearn/hmmlearn
参考链接:
如何用简单易懂的例子解释隐马尔可夫模型? - 知乎
有些文章里面已经介绍得非常清楚了,只是需要在项目中进行实践,然后做一下总结。
数学之美里有一章专门讲了隐含马尔科夫模型,讲得非常的通俗易懂。
在自然语言处理方面得到了广泛的应用,此外还有语音识别,机器翻译。
通信是一个编码、传输和解码的过程。自然语言的处理应该使用通信原理解决,而不是在语言的语法和语义上。

通信六要素:信息源、信道、接受者、信息、上下文和编码。
解码就是通过接受到的信号(o)还原出发送的信号(s)。
语音识别就是听话的人去采说话人要表达的意思,机器翻译也是同理。

上式等价于:
而上面的分母可以省略,因为一旦信息产生了,它就不会变了,事件就是一个固定的事件,一个固定事件发生的概率必然是一个常数,对这个公式而言它就可以省略了。 余下的式子就可以通过隐马尔科夫模型来求解。
马尔科夫链:概率论的研究对象从静态的随机变量转移到动态的序列随机变量上,一个简化的假设:随机过程中每个状态的概率分布只与它的前一个状态有关,即:


马尔科夫链:我们已经知道一个马尔科夫链的所有的状态,让它随机运行,随机初始化,后面随机选择,运行完了会产生一个状态序列,可以因此估计转移概率。
隐马尔科夫模型:状态是不可见的,无法通过观察状态序列推算转移概率,但它会输出一个结果序列(仅与状态相关,独立输出假设),

可以计算出某个特定状态序列(s)产生输出序列(o)的概率:

等价于:

这就与前面的式子联系在了一起,可以解码问题就得到了解决。
隐马尔可夫模型有三个问题:
- 给定一个模型(参数),计算某个特定输出序列的概率;(forward-backward算法)
- 给定模型和某个特定的输出序列,找到最可能的状态序列;(维特比算法) 解码算法
- 给定观测数据,估计隐马尔科夫模型的参数。(鲍姆-韦尔奇算法(Baum-Welch)) 训练算法
需要知道:状态转移概率,生成概率等模型参数,估计这两个参数称为模型的训练。

有两种训练方法:一是有监督训练方法;一是无监督训练。
有监督的需要得到人工的标注训练集,成本高,而且一些情况下无法得到训练集,如语音识别。
可行的方式是仅仅通过观察信号(o)推算出模型的这两个参数,使用鲍姆-韦尔奇算法(Baum-Welch)
鲍姆-韦尔奇算法(Baum-Welch):
初始化可行的模型参数,在此模型下,计算出产生观察信号(o)的所有路径及其概率,作为标注的训练数据,计算出新的模型参数,此时迭代后的模型参数一定优于原来的模型参数。不断迭代,直至最后模型质量不再提升。
这也是个期望最大化的过程,简称EM过程,目前只能寻找出局部最优解,除非目标函数是凸函数。
待续~
HMM隐马尔科夫模型的更多相关文章
- 自然语言处理(1)-HMM隐马尔科夫模型基础概念(一)
隐马尔科夫模型HMM 序言 文本序列标注是自然语言处理中非常重要的一环,我先接触到的是CRF(条件随机场模型)用于解决相关问题,因此希望能够对CRF有一个全面的理解,但是由于在学习过程中发现一个算法像 ...
- HMM 隐马尔科夫模型
参考如下博客: http://www.52nlp.cn/itenyh%E7%89%88-%E7%94%A8hmm%E5%81%9A%E4%B8%AD%E6%96%87%E5%88%86%E8%AF%8 ...
- HMM基本原理及其实现(隐马尔科夫模型)
HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态 ...
- 基于隐马尔科夫模型(HMM)的地图匹配(Map-Matching)算法
文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matchi ...
- 隐马尔科夫模型HMM学习最佳范例
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...
- HMM 自学教程(四)隐马尔科夫模型
本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...
- 隐马尔科夫模型(HMM)的概念
定义隐马尔科夫模型可以用一个三元组(π,A,B)来定义:π 表示初始状态概率的向量A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率B =(bij) ...
- 猪猪的机器学习笔记(十七)隐马尔科夫模型HMM
隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来 ...
- 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
随机推荐
- mipi协议中文详解
一.MIPI MIPI(移动行业处理器接口)是Mobile Industry Processor Interface的缩写.MIPI(移动行业处理器接口)是MIPI联盟发起的为移动应用处理器制定的开放 ...
- 2016年11月22日 星期二 --出埃及记 Exodus 20:13
2016年11月22日 星期二 --出埃及记 Exodus 20:13 "You shall not murder.不可杀人.
- gd-jpeg: JPEG library reports unrecoverable error 解决办法
Warning: imagecreatefromjpeg() [function.imagecreatefromjpeg]: gd-jpeg: JPEG library reports unrecov ...
- HTML5/CSS3(PrefixFree.js) 3D文字特效
之前在园子里看到一个HTML5/CSS3的文字特效(这里),觉得挺好玩的所以小小的研究了下,不过发现代码都是针对webkit以及FF的所以IE跪了. Runjs 我将示例中的代码进行了精简,后来发现C ...
- Android 进度条
<?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...
- CoreData 与 SQLite 比较
CoreData.framework : iOS中提供了对原始SQLite数据库API访问的封装,通过这个framework来管理数据缓存和持久数据要比使用SQL语句操作SQLite数据库简单和方便许 ...
- C#控制台->>四则运算
用户需求: 要求编写一个0-10之间的整数进行四则运算,程序能接收输入的整数答案,并判断对错,程序结束时,统计出答对.答错的题目数量!并且0-10的整数是随机生成的,用户可以用键盘输入来选择四则运算中 ...
- tomcat源码导入eclipse步骤
1. 获取源代码 方式一:从官网http://tomcat.apache.org/download-70.cgi 直接下载,官网提供了Binary 和 Source Code两种下载方式,要研究tom ...
- 指令随笔之:tail、cat、scp、&、&&、;、|、>、>>
tail(中文意思是跟踪) tail默认只看文件的最后10行内容,cat则一次显示全部内容 ping 192.168.120.204 > zyx.log & # &表 ...
- FJNU 1159 Fat Brother’s new way(胖哥的新姿势)
FJNU 1159 Fat Brother’s new way(胖哥的新姿势) Time Limit: 1000MS Memory Limit: 257792K [Description] [题目 ...