XGBoost参数
XGBoost参数
转自http://blog.csdn.net/zc02051126/article/details/46711047
在运行XGboost之前,必须设置三种类型成熟:general parameters,booster parameters和task parameters:
- General parameters:参数控制在提升(boosting)过程中使用哪种booster,常用的booster有树模型(tree)和线性模型(linear model)。
- Booster parameters:这取决于使用哪种booster。
- Task parameters:控制学习的场景,例如在回归问题中会使用不同的参数控制排序。
- 除了以上参数还可能有其它参数,在命令行中使用
General Parameters
- booster [default=gbtree]
- 有两中模型可以选择gbtree和gblinear。gbtree使用基于树的模型进行提升计算,gblinear使用线性模型进行提升计算。
缺省值为gbtree
- 有两中模型可以选择gbtree和gblinear。gbtree使用基于树的模型进行提升计算,gblinear使用线性模型进行提升计算。
- silent [default=0]
- 取0时表示打印出运行时信息,取1时表示以缄默方式运行,不打印运行时信息。
缺省值为0
- 取0时表示打印出运行时信息,取1时表示以缄默方式运行,不打印运行时信息。
- nthread [default to maximum number of threads available if not set]
- XGBoost运行时的线程数。
缺省值是当前系统可以获得的最大线程数
- XGBoost运行时的线程数。
- num_pbuffer [set automatically by xgboost, no need to be set by user]
- size of prediction buffer, normally set to number of training instances. The buffers are used to save the prediction results of last boosting step.
- num_feature [set automatically by xgboost, no need to be set by user]
- boosting过程中用到的特征维数,设置为特征个数。
XGBoost会自动设置,不需要手工设置
- boosting过程中用到的特征维数,设置为特征个数。
Parameter for Tree Booster
- eta [default=0.3]
- 为了防止过拟合,更新过程中用到的收缩步长。在每次提升计算之后,算法会直接获得新特征的权重。 eta通过缩减特征的权重使提升计算过程更加保守。
缺省值为0.3
- 取值范围为:[0,1]
- 为了防止过拟合,更新过程中用到的收缩步长。在每次提升计算之后,算法会直接获得新特征的权重。 eta通过缩减特征的权重使提升计算过程更加保守。
- gamma [default=0]
- minimum loss reduction required to make a further partition on a leaf node of the tree. the larger, the more conservative the algorithm will be.
- range: [0,∞]
- max_depth [default=6]
- 数的最大深度。
缺省值为6
- 取值范围为:[1,∞]
- 数的最大深度。
- min_child_weight [default=1]
- 孩子节点中最小的样本权重和。如果一个叶子节点的样本权重和小于min_child_weight则拆分过程结束。在现行回归模型中,这个参数是指建立每个模型所需要的最小样本数。该值越大算法越保守
- 取值范围为: [0,∞]
- max_delta_step [default=0]
- Maximum delta step we allow each tree’s weight estimation to be. If the value is set to 0, it means there is no constraint. If it is set to a positive value, it can help making the update step more conservative. Usually this parameter is not needed, but it might help in logistic regression when class is extremely imbalanced. Set it to value of 1-10 might help control the update
- 取值范围为:[0,∞]
- subsample [default=1]
- 用于训练模型的子样本占整个样本集合的比例。如果设置为0.5则意味着XGBoost将随机的冲整个样本集合中随机的抽取出50%的子样本建立树模型,这能够防止过拟合。
- 取值范围为:(0,1]
- colsample_bytree [default=1]
- 在建立树时对特征采样的比例。
缺省值为1
- 取值范围:(0,1]
- 在建立树时对特征采样的比例。
Parameter for Linear Booster
- lambda [default=0]
- L2 正则的惩罚系数
- alpha [default=0]
- L1 正则的惩罚系数
- lambda_bias
- 在偏置上的L2正则。
缺省值为0
(在L1上没有偏置项的正则,因为L1时偏置不重要)
- 在偏置上的L2正则。
Task Parameters
- objective [ default=reg:linear ]
- 定义学习任务及相应的学习目标,可选的目标函数如下:
- “reg:linear” –线性回归。
- “reg:logistic” –逻辑回归。
- “binary:logistic” –二分类的逻辑回归问题,输出为概率。
- “binary:logitraw” –二分类的逻辑回归问题,输出的结果为wTx。
- “count:poisson” –计数问题的poisson回归,输出结果为poisson分布。
- 在poisson回归中,max_delta_step的缺省值为0.7。(used to safeguard optimization)
- “multi:softmax” –让XGBoost采用softmax目标函数处理多分类问题,同时需要设置参数num_class(类别个数)
- “multi:softprob” –和softmax一样,但是输出的是ndata * nclass的向量,可以将该向量reshape成ndata行nclass列的矩阵。没行数据表示样本所属于每个类别的概率。
- “rank:pairwise” –set XGBoost to do ranking task by minimizing the pairwise loss
- base_score [ default=0.5 ]
- the initial prediction score of all instances, global bias
- eval_metric [ default according to objective ]
- 校验数据所需要的评价指标,不同的目标函数将会有缺省的评价指标(rmse for regression, and error for classification, mean average precision for ranking)
- 用户可以添加多种评价指标,对于Python用户要以list传递参数对给程序,而不是map参数list参数不会覆盖’eval_metric’
- The choices are listed below:
- “rmse”: root mean square error
- “logloss”: negative log-likelihood
- “error”: Binary classification error rate. It is calculated as #(wrong cases)/#(all cases). For the predictions, the evaluation will regard the instances with prediction value larger than 0.5 as positive instances, and the others as negative instances.
- “merror”: Multiclass classification error rate. It is calculated as #(wrong cases)/#(all cases).
- “mlogloss”: Multiclass logloss
- “auc”: Area under the curve for ranking evaluation.
- “ndcg”:Normalized Discounted Cumulative Gain
- “map”:Mean average precision
- “ndcg@n”,”map@n”: n can be assigned as an integer to cut off the top positions in the lists for evaluation.
- “ndcg-“,”map-“,”ndcg@n-“,”map@n-“: In XGBoost, NDCG and MAP will evaluate the score of a list without any positive samples as 1. By adding “-” in the evaluation metric XGBoost will evaluate these score as 0 to be consistent under some conditions.
training repeatively
- seed [ default=0 ]
- 随机数的种子。
缺省值为0
- 随机数的种子。
Console Parameters
The following parameters are only used in the console version of xgboost
* use_buffer [ default=1 ]
- 是否为输入创建二进制的缓存文件,缓存文件可以加速计算。缺省值为1
* num_round
- boosting迭代计算次数。
* data
- 输入数据的路径
* test:data
- 测试数据的路径
* save_period [default=0]
- 表示保存第i*save_period次迭代的模型。例如save_period=10表示每隔10迭代计算XGBoost将会保存中间结果,设置为0表示每次计算的模型都要保持。
* task [default=train] options: train, pred, eval, dump
- train:训练明显
- pred:对测试数据进行预测
- eval:通过eval[name]=filenam定义评价指标
- dump:将学习模型保存成文本格式
* model_in [default=NULL]
- 指向模型的路径在test, eval, dump都会用到,如果在training中定义XGBoost将会接着输入模型继续训练
* model_out [default=NULL]
- 训练完成后模型的保持路径,如果没有定义则会输出类似0003.model这样的结果,0003是第三次训练的模型结果。
* model_dir [default=models]
- 输出模型所保存的路径。
* fmap
- feature map, used for dump model
* name_dump [default=dump.txt]
- name of model dump file
* name_pred [default=pred.txt]
- 预测结果文件
* pred_margin [default=0]
- 输出预测的边界,而不是转换后的概率
XGBoost参数的更多相关文章
- XGBoost参数调优完全指南(附Python代码)
XGBoost参数调优完全指南(附Python代码):http://www.2cto.com/kf/201607/528771.html https://www.zhihu.com/question/ ...
- xgboost 参数
XGBoost 参数 在运行XGBoost程序之前,必须设置三种类型的参数:通用类型参数(general parameters).booster参数和学习任务参数(task parameters). ...
- XGBoost参数调优
XGBoost参数调优 http://blog.csdn.net/hhy518518/article/details/54988024 摘要: 转载:http://blog.csdn.NET/han_ ...
- 【转】XGBoost参数调优完全指南(附Python代码)
xgboost入门非常经典的材料,虽然读起来比较吃力,但是会有很大的帮助: 英文原文链接:https://www.analyticsvidhya.com/blog/2016/03/complete-g ...
- 机器学习——XGBoost大杀器,XGBoost模型原理,XGBoost参数含义
0.随机森林的思考 随机森林的决策树是分别采样建立的,各个决策树之间是相对独立的.那么,在我们得到了第k-1棵决策树之后,能否通过现有的样本和决策树的信息, 对第m颗树的建立产生有益的影响呢?在随机森 ...
- XGBoost参数调优完全指南
简介 如果你的预测模型表现得有些不尽如人意,那就用XGBoost吧.XGBoost算法现在已经成为很多数据工程师的重要武器.它是一种十分精致的算法,可以处理各种不规则的数据.构造一个使用XGBoost ...
- xgboost 参数调优指南
一.XGBoost的优势 XGBoost算法可以给预测模型带来能力的提升.当我对它的表现有更多了解的时候,当我对它的高准确率背后的原理有更多了解的时候,我发现它具有很多优势: 1 正则化 标准GBDT ...
- XGBoost参数中文翻译以及参数调优
XGBoost:参数解释:https://blog.csdn.net/zc02051126/article/details/46711047 机器学习系列(11)_Python中Gradient Bo ...
- xgboost参数及调参
常规参数General Parameters booster[default=gbtree]:选择基分类器,可以是:gbtree,gblinear或者dart.gbtree和draf基于树模型,而gb ...
随机推荐
- 文字对齐之text-align总结
一.文字对齐总结: 下面是我实际运用中遇到的问题总结: css代码: 效果(段落文字没有对齐): 去掉html中的<p>标签,css样式同样去掉p标签,效果如下(达到预期效果): 为什么在 ...
- HackerRank "Minimum Average Waiting Time" !
Something to learn: http://blog.csdn.net/yuwenshi/article/details/36666453 Shortest Job First Algori ...
- bzoj2044: 三维导弹拦截
Description 一场战争正在A国与B国之间如火如荼的展开. B国凭借其强大的经济实力开发出了无数的远程攻击导弹,B国的领导人希望,通过这些导弹直接毁灭A国的指挥部,从而取得战斗的胜利!当然,A ...
- HDU3415
题目大意: 给出一个有N个数字(-1000..1000,N<=10^5)的环状序列,找出一个长度不大于k的连续子序列,使其和最大. 分析: 我们可以将环状序列从某处切开,变成一行,然后复制前n- ...
- Objective C SEl 和@selector是怎么工作的||How do SEL and @selector work in iphone sdk?
SEL is a type that represents a selector in Objective-C. The @selector() keyword returns a SEL that ...
- Google glog 使用
Google glog 使用 1 简介 Googleglog 库实现了应用级的日志记录,提供了C++ 风格的流操作和各种助手宏. 代码示例: #include <glog/logg ...
- codeforces 258C Little Elephant and LCM 组合数学 枚举
题意: input : n a1,a2,...,an 1 <= n <= 10^5 1 <= ai <= 10^5 求b数组的方案数,b数组满足: 1. 1 <= bi ...
- 系统yum源更新及某些软件官方源安装
一.缘由 想在centos6.6上安装zabbix-agent,可是yum search 之后没有,又不想二进制安装,所以就找各种在线安装方法. 二.解决办法 思路: 1.尝试更新对应版本最新的yum ...
- 用happen-before规则重新审视DCL(转)
编写Java多线程程序一直以来都是一件十分困难的事,多线程程序的bug很难测试,DCL(Double Check Lock)就是一个典型,因此对多线程安全的理论分析就显得十分重要,当然这决不是说对多线 ...
- 十一、jdk命令之Jstatd命令(Java Statistics Monitoring Daemon)
目录 一.jdk工具之jps(JVM Process Status Tools)命令使用 二.jdk命令之javah命令(C Header and Stub File Generator) 三.jdk ...