【BZOJ】【1069】【SCOI2007】最大土地面积
计算几何/旋转卡壳
从已知点中选出四个使得选出的四边形面积最大,很明显我们应该在凸包上搞。
我一开始的思路是:枚举 i ,找到 i 的对锺点cur1,这两个点将凸包分成了两半,我们在左半中枚举一个 j ,然后在右半中找一个离 j 最远的“对锺点”(可能不是?反正找的是最远……)cur2,然后求cur1和cur2都是单调的,复杂度为枚举 i, j的$O(n^2)$
然而跪了= =然后我去Orz了proverbs的题解,得到启示:我们可以枚举一条对角线,然后在左半和右半中各找一条跟这条对角线最远的点!这两个点的寻找明显是单调的,复杂度为枚举对角线的两个端点的$O(n^2)$
Orzzzzz思路还是不够开阔啊
一开始错我还以为是旋转卡壳写错了……后来发现原来是凸包写错了QAQ
/**************************************************************
Problem: 1069
User: Tunix
Language: C++
Result: Accepted
Time:284 ms
Memory:1340 kb
****************************************************************/ //BZOJ 1069
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
typedef long long LL;
inline int getint(){
int r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if (ch=='-') r=-;
for(; isdigit(ch);ch=getchar()) v=v*-''+ch;
return r*v;
}
const int N=;
/*******************template********************/
struct Poi{
double x,y;
Poi(){}
Poi(double x,double y):x(x),y(y){}
void read(){scanf("%lf%lf",&x,&y);}
}p[N],ch[N];
typedef Poi Vec;
Vec operator - (const Poi &a,const Poi &b){return Vec(a.x-b.x,a.y-b.y);}
bool operator < (const Poi &a,const Poi &b){return a.x<b.x || (a.x==b.x && a.y<b.y);}
inline double Dot(const Poi &a,const Poi &b){return a.x*b.x+a.y*b.y;}
inline double Cross(const Poi &a,const Poi &b){return a.x*b.y-a.y*b.x;} int n,m;
double ans;
void graham(Poi *p,int n){
sort(p+,p+n+);
ch[++m]=p[];
F(i,,n){
while(m> && Cross(ch[m]-ch[m-],p[i]-ch[m-])<=) m--;
ch[++m]=p[i];
}
int k=m;
D(i,n-,){
while(m>k && Cross(ch[m]-ch[m-],p[i]-ch[m-])<=) m--;
ch[++m]=p[i];
}
if (n>) m--;
}
double getans(Poi a1,Poi a2,Poi b1,Poi b2){
return Cross(a2-a1,b1-a1)+Cross(b2-b1,a1-b1);
}
void rot(Poi *p,int n){
int cur1=,cur2,j;
F(i,,n) p[i+n]=p[i];
F(i,,n-){
cur1=i+;
j=cur1+;
cur2=j+;
for(;j<i+n-;j++){
while(Cross(p[cur1+]-p[i],p[j]-p[i]) > Cross(p[cur1]-p[i],p[j]-p[i]))
cur1=cur1%n+;
while(Cross(p[cur2+]-p[j],p[i]-p[j]) > Cross(p[cur2]-p[j],p[i]-p[j])){
cur2=cur2%n+;
if (cur2>=i+n-) break;
}
if (cur2>i+n-) break;
ans=max(ans,getans(p[i],p[cur1],p[j],p[cur2]));
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("1069.in","r",stdin);
// freopen("1069.out","w",stdout);
#endif
n=getint();
F(i,,n) p[i].read();
graham(p,n);
rot(ch,m);
printf("%.3f\n",ans*0.5);
return ;
}
1069: [SCOI2007]最大土地面积
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 1853 Solved: 683
[Submit][Status][Discuss]
Description
在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大。
Input
第1行一个正整数N,接下来N行,每行2个数x,y,表示该点的横坐标和纵坐标。
Output
最大的多边形面积,答案精确到小数点后3位。
Sample Input
0 0
1 0
1 1
0 1
0.5 0.5
Sample Output
HINT
数据范围 n<=2000, |x|,|y|<=100000
Source
【BZOJ】【1069】【SCOI2007】最大土地面积的更多相关文章
- bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2277 Solved: 853[Submit][Stat ...
- BZOJ 1069: [SCOI2007]最大土地面积 [旋转卡壳]
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 2978 Solved: 1173[Submit][Sta ...
- BZOJ 1069: [SCOI2007]最大土地面积(旋转卡壳)
题目链接~ 1069: [SCOI2007]最大土地面积 思路很简单,极角排序求完凸包后,在凸包上枚举对角线,然后两边分别来两个点旋转卡壳一下,搞定! 不过计算几何的题目就是这样,程序中间的处理还是比 ...
- ●BZOJ 1069 [SCOI2007]最大土地面积
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1069 题解: 计算几何,凸包,旋转卡壳 其实和这个题差不多,POJ 2079 Triangl ...
- bzoj 1069 [SCOI2007]最大土地面积——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1069 发现 n 可以 n^2 .所以枚举对角线,分开的两部分三角形就可以旋转卡壳了. 注意坐 ...
- [BZOJ]1069: [SCOI2007]最大土地面积
题目大意:给出二维平面上n个点,求最大的由这些点组成的四边形面积.(n<=2000) 思路:求出凸包后旋转卡壳枚举对踵点对作为四边形的对角线,枚举或二分另外两个点,复杂度O(n^2)或O(nlo ...
- bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳
题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...
- BZOJ 1069 [SCOI2007]最大土地面积 ——计算几何
枚举对角线,然后旋转卡壳即可. #include <map> #include <cmath> #include <queue> #include <cstd ...
- 1069: [SCOI2007]最大土地面积
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 2961 Solved: 1162[Submit][Sta ...
- 【BZOJ】1069: [SCOI2007]最大土地面积(凸包+旋转卡壳)
http://www.lydsy.com/JudgeOnline/problem.php?id=1069 显然这四个点在凸包上,然后枚举两个点找上下最大的三角形即可. 找三角形表示只想到三分QAQ.. ...
随机推荐
- mongodb基础用法
安装部分 mongodb配置方法 mongodb的安装目录 C:\MongoDB\Server\3.2\bin 创建以下目录 c:\mongo\log c:\mongo\db 创建mongodb的配置 ...
- 对话框AlertDialog的基本类型与创建
测试代码: 布局: activity_main.xml: <LinearLayout xmlns:android="http://schemas.android.com/apk/res ...
- ASP.NET MVC5学习笔记之Controller执行ControllerDescriptor和ActionDescriptor
一. ControllerDescriptor说明 ControllerDescriptor是一个抽象类,它定义的接口代码如下: public abstract class ControllerDes ...
- C# 平时碰见的问题【5】
vs按F5启动调试,项目不会编译的解决办法 工具 -> 选项 -> 项目和解决方案 -> 运行时, 当项目过期(下拉框) -> 不要选[从不生成] 附英文版的:
- 6.css文本样式
文本样式,只要针对的是文本的效果和文本的方位,即文本样式和文本控制总结起来有一表中的属性可用: 属性名 说明 CSS 版本 text-decoration 装饰文本出现各种划线 1 text-tran ...
- SQL基础篇---函数及其函数配套使用的关键字
一.数值函数 知识点1 SUM 求总和 SELECT breakfast,sum(price) FROM my_foods GROUP BY breakfast ORDER BY SUM(price) ...
- 简答的理解C语言中的各种类型函数
1.变参函数 变长参数的函数即参数个数可变.参数类型不定 的函数.最常见的例子是printf函数.scanf函数和高级语言的Format函数.在C/C++中,为了通知编译器函数的参数个数和类型可变(即 ...
- NOJ1142-最大连续和
最大连续和 时间限制(普通/Java) : 1000 MS/ 3000 MS 运行内存限制 : 65536 KByte总提交 : 1282 测试通过 : 230 ...
- PAT乙级真题1003. 我要通过!(20)(解题)
“答案正确”是自动判题系统给出的最令人欢喜的回复.本题属于PAT的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”. 得到“答案正确”的条件是: 1 ...
- sqlserver中查找长时间未提交事务
无论是有意无意,如果事务在数据库中保持打开,则它会阻塞其他进程对修改后的数据进行操作.同样,对事务日志进行备份也只会截断不活动事务的那部分事务日志,所以打开的事务会导致日志变多(甚至达到物理限制),直 ...