【转载】使用Pandas进行数据匹配
使用Pandas进行数据匹配
本文转载自:蓝鲸的网站分析笔记
原文链接:使用Pandas进行数据匹配
目录
Pandas中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能。与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式。 其中inner为默认的匹配模式。本篇文章我们将介绍merge函数的使用方法和4种拼接模式的区别。
下面是我们准备进行拼接的两个数据表,左边是贷款状态表loan_stats,右边为用户等级表member_grade。我们将分别用merge函数的4种匹配模式对这两个表进行拼接。
准备工作
开始使用merge函数进行数据拼接之前先导入所需的功能库,然后将分别读取两个数据表,并命名为loanstats表和member_grade表。
1
2
3
4
|
import numpy as np import pandas as pd loanstats = pd.DataFrame(pd.read_excel( 'loanStats.xlsx' )) member_grade = pd.DataFrame(pd.read_excel( 'member_grade.xlsx' )) |
函数功能介绍
merge函数的使用方法很简单,以下是官方的函数功能介绍和使用说明。merge函数中第一个出现的数据表是拼接后的left部分,第二个出现的数据表是拼接后的right部分。第三个是数据匹配模 式,默认是inner模式。第四个参数on表示数据匹配所依据的字段名称,如果这个字段名称同时出现在两个数据表中,那么可以省略on参数的设置,merge默认会按照两个数据表中共有的字段名称进行匹配和拼接。如果两个数据表中的匹配字段名称不一致,则需要分别在left_on和right_on参数中指明两个表匹配字段的名称。如果两个数据表中没有匹配字段,需要使用索引列进行匹配和拼接,可以对left_index和right_index参数设置为True。merge还有一些排序和其他的参数,可在需要使用时进行设置。
Inner模式匹配
inner模式是merge的默认匹配模式,我们通过下面的文氏图来说明inner的匹配方法。Inner模式提供在loanstats和member_grade表中共有字段的匹配结果。也就是对两个的表交集部分进行匹配和拼接。单独只出现在一个表中的字段值不会参与匹配和拼接。
以下是使用merge函数进行拼接的代码,因为inner是默认的拼接模式,因此也可以省略how=’inner’部分。其中第一个出现的loanstats出现在拼接后的左侧,member_grade出现在拼接后的右侧。拼接后的数据表中只包含两个表的交集,因此不存在未匹配到的NaN情况。
1
|
loan_inner = pd.merge(loanstats,member_grade,how = 'inner' ) |

left模式匹配
left模式是左匹配,以左边的数据表loanstats为基础匹配右边的数据表member_grade中的内容。匹配不到的内容以NaN值显示。在Excel中就好像将Vlookup公式写在了左边的表中。下面的文氏图说明了left模式的匹配方法。Left模式匹配的结果显示了所有左边数据表的内容,以及和右边数据表共有的内容。
以下为使用left模式匹配并拼接后的结果,loanstats在merge函数中第一个出现,因此为左表,member_grade第二个出现,为右表。匹配模式为left模式。从结果中可以看出left匹配模式保留了一张完整的loanstats表,以此为基础对member_grade表中的内容进行匹配。loanstats表中有两个member_id值在member_grade中无法找到,因此grades字段显示为NaN值。
1
|
loan_left = pd.merge(loanstats,member_grade,how = 'left' ) |

right模式匹配
第三种模式是right匹配,right与left模式正好相反,right模式是右匹配,以右边的数据表member_grade为基础匹配左边的数据表loanstats。匹配不到的内容以NaN值显示。下面通过文氏图说明right模式的匹配方法。Right模式匹配的结果显示了所有右边数据表的内容,以及和左边数据表共有的内容。
以下为使用right模式匹配拼接的结果,从结果表中可以看出right匹配模式保留了完整的member_grade表,以此为基础对loanstats表进行匹配,在member_grade数据表中有两个条目在loanstats数据表中无法找到,因此显示为了NaN值。
1
|
loan_right = pd.merge(loanstats,member_grade,how = 'right' ) |
outer模式匹配
最后一种模式是outer匹配,outer模式是两个表的汇总,将loanstats和member_grade两个要匹配的两个表汇总在一起,生成一张汇总的唯一值数据表以及匹配结果。
下面是使用outer模式匹配拼接的结果,其中member_id列包含了loanstats和member_grade中的唯一值,grade列显示了对member_grade表匹配的结果,其他列则显示了对loanstats表匹配的结果 ,无法匹配的内容以NaN值显示。
1
|
loan_outer = pd.merge(loanstats,member_grade,how = 'outer' ) |

NaN值匹配问题
在进行数据匹配和拼接的过程中经常会遇到NaN值。这种情况下merge函数会如何处理呢?merge会将两个数据表中的NaN值进行交叉匹配拼接,换句话说就是将loanstats表member_id列中的NaN值
分别与member_grade表中member_id列中的每一个NaN值进行匹配,然后再拼接在一张表中。下面是包含NaN值的两张数据表进行拼接的结果,当我们使用left模式进行匹配时,loanstats作为基础
表,其中member_id列的NaN值分别与member_grade表中member_id列的每一个NaN值进行匹配。并将匹配结果显示在了结果表中。
1
|
loan_left = pd.merge(loanstats,member_grade,how = 'left' ) |
【转载】使用Pandas进行数据匹配的更多相关文章
- 转载:使用Pandas进行数据匹配
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式 ...
- 【转载】使用Pandas对数据进行筛选和排序
使用Pandas对数据进行筛选和排序 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas对数据进行筛选和排序 目录: sort() 对单列数据进行排序 对多列数据进行排序 获取金额最小前10项 ...
- 【转载】使用Pandas进行数据提取
使用Pandas进行数据提取 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据提取 目录 set_index() ix 按行提取信息 按列提取信息 按行与列提取信息 提取特定日期的信 ...
- 【转载】使用Pandas创建数据透视表
使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(inde ...
- 基于pandas进行数据预处理
很久没用pandas,有些有点忘了,转载一个比较完整的利用pandas进行数据预处理的博文:https://blog.csdn.net/u014400239/article/details/70846 ...
- 其它课程中的python---5、Pandas处理数据和读取数据
其它课程中的python---5.Pandas处理数据和读取数据 一.总结 一句话总结: 记常用和特例:慢慢慢慢的就熟了,不用太着急,慢慢来 库的使用都很简单:就是库的常用函数就这几个,后面用的时候学 ...
- Pandas查询数据的几种方法
Pandas查询数据 Pandas查询数据的几种方法 df.loc方法,根据行.列的标签值查询 df.iloc方法,根据行.列的数字位置查询 df.where方法 df.query方法 .loc既能查 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- Pandas 把数据写入csv
Pandas 把数据写入csv from sklearn import datasets import pandas as pd iris = datasets.load_iris() iris_X ...
随机推荐
- (转)java DecimalFormat用法
DecimalFormat 是 NumberFormat 的一个具体子类,用于格式化十进制数字. DecimalFormat 包含一个模式 和一组符号 符号含义: 0 一个数字 # 一个数字, ...
- Leetcode: sliding window maximum
August 7, 2015 周日玩这个算法, 看到Javascript Array模拟Deque, 非常喜欢, 想用C#数组也模拟; 看有什么新的经历. 试了四五种方法, 花时间研究C# Sorte ...
- 【2016-11-2】【坚持学习】【Day17】【通过反射自动将datareader转为实体info】
通过ADO.net 查询到数据库的数据后,通过DataReader转为对象Info public class BaseInfo { /// <summary> /// 填充实体 /// & ...
- 你知道 Twitter,但你可能不知道它的 “成长模式” 和 “参与阶梯”
当你为产品创建 “成长模式” 时,你需要回答以下关键问题(类Twitter产品:http://www.jinhusns.com/Products/Download/?type=xcj ): 目标:产品 ...
- Apache Hama安装部署
安装Hama之前,应该首先确保系统中已经安装了hadoop,本集群使用的版本为hadoop-2.3.0 一.下载及解压Hama文件 下载地址:http://www.apache.org/dyn/clo ...
- Python黑客编程ARP欺骗
Python灰帽编程 3.1 ARP欺骗 ARP欺骗是一种在局域网中常用的攻击手段,目的是让局域网中指定的(或全部)的目标机器的数据包都通过攻击者主机进行转发,是实现中间人攻击的常用手段,从而实现数据 ...
- jmeter(六)元件的作用域与执行顺序
jmeter是一个开源的性能测试工具,它可以通过鼠标拖拽来随意改变元件之间的顺序以及元件的父子关系,那么随着它们的顺序和所在的域不同,它们在执行的时候,也会有很多不同. jmeter的test pla ...
- Linux系统1.md
计算机 介绍 电子计算机(英语:computer),亦称电脑,是一种利用电子学原理,根据一系列指令对数据进行处理的工具. 在现代,机械计算机的应用已经完全被电子计算机所替换,其所相关的技术研究叫计算机 ...
- http缓存相关头
https://mp.weixin.qq.com/s/qOMO0LIdA47j3RjhbCWUEQ 这里说的一下我对http控制客户端缓存的头的理解. 在请求一个静态文件的时候(图片,css,js)等 ...
- JSP基础学习
JQuery教程: http://www.w3school.com.cn/jquery/ HTTP协议的 http://www.w3.org/Protocols/rfc2616/rfc2616.htm ...