Codeforces 348 D - Turtles Lindström–Gessel–Viennot lemma
#include<bits/stdc++.h>
using namespace std;
#define y1 y11
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define pdd pair<double, double>
#define mem(a, b) memset(a, b, sizeof(a))
#define debug(x) cerr << #x << " = " << x << "\n";
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//head const int N = 3e3 + ;
const int MOD = 1e9 + ;
int dp[N][N], n, m;
char s[N][N];
int solve(int a, int b, int c, int d) {
for (int i = ; i <= n; ++i) for (int j = ; j <= m; ++j) dp[i][j] = ;
for (int i = a; i <= c; ++i) {
for (int j = b; j <= d; ++j) {
if(i == a && j == b) {
if(s[i][j] == '.') dp[i][j] = ;
}
else {
if(s[i][j] == '.') dp[i][j] = (dp[i-][j]+dp[i][j-])%MOD;
}
}
}
return dp[c][d];
}
int main() {
scanf("%d %d", &n, &m);
for (int i = ; i <= n; ++i) scanf("%s", s[i]+);
printf("%lld\n", (solve(, , n-, m)*1LL*solve(, , n, m-) - solve(, , n, m-)*1LL*solve(, , n-, m)%MOD+MOD)%MOD);
return ;
}
Codeforces 348 D - Turtles Lindström–Gessel–Viennot lemma的更多相关文章
- 牛客网多校训练第一场 A - Monotonic Matrix(Lindström–Gessel–Viennot lemma)
链接: https://www.nowcoder.com/acm/contest/139/A 题意: 求满足以下条件的n*m矩阵A的数量模(1e9+7):A(i,j) ∈ {0,1,2}, 1≤i≤n ...
- Nowcoder Monotonic Matrix ( Lindström–Gessel–Viennot lemma 定理 )
题目链接 题意 : 在一个 n * m 的矩阵中放置 {0, 1, 2} 这三个数字.要求 每个元素 A(i, j) <= A(i+1, j) && A(i, j) <= ...
- Lindström–Gessel–Viennot lemma定理 行列式板子
https://blog.csdn.net/qq_37025443/article/details/86537261 博客 下面是wiki上的讲解,建议耐心地看一遍...虽然看了可能还是不懂 http ...
- Lindström–Gessel–Viennot lemma
解决不相交路径计数 有两个大小为N的点集A,B A上每一个点对应着B的每一个点 求满足条件的路径集合有多少个 图里面可能还有一些障碍 Codeforces 348 D 有一个N*M的网格图 有两个点 ...
- LGV 算法 (Lindström–Gessel–Viennot lemma)
e(ai,bi)为从起点ai到终点bi的方案数.以上矩阵行列式结果就是(a1,a2,...an) 到 (b1,b2,...bn) 的所有不相交路径的种数. 具体证明的话看wiki,比较长.. 这个定理 ...
- Lindström–Gessel–Viennot lemma 应用两则
对于一张无边权的DAG图,给定n个起点和对应的n个终点,这n条不相交路径的方案数为 det() (该矩阵的行列式) 其中e(a,b)为图上a到b的方案数 codeforces 348D [给定一张n* ...
- 排列组合( Lindström–Gessel–Viennot lemma 定理)
链接:https://www.nowcoder.com/acm/contest/139/A来源:牛客网 Monotonic Matrix 时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ ...
- Codeforces 348 D - Turtles
D - Turtles 思路: LGV 定理 (Lindström–Gessel–Viennot lemma) 从{\(a_1\),\(a_2\),...,\(a_n\)} 到 {\(b_1\),\( ...
- LGV定理 (CodeForces 348 D Turtles)/(牛客暑期多校第一场A Monotonic Matrix)
又是一个看起来神奇无比的东东,证明是不可能证明的,这辈子不可能看懂的,知道怎么用就行了,具体看wikihttps://en.wikipedia.org/wiki/Lindstr%C3%B6m%E2%8 ...
随机推荐
- WXS-运算符
- Django 之上下文处理器和中间件
一.上下文处理器 上下文处理器是可以返回一些数据,在全局模板中都可以使用.比如登录后的用户信息,在很多页面中都需要使用,那么我们可以放在上下文处理器中,就没有必要在每个视图函数中都返回这个对象. 在s ...
- Extjs GridField 总结
此代码为完整代码,其中包含定位.使用 Enter 键,来实现 Tab 键. Ext.define('xxx.recordBook.view.EditGrid', { extend: 'Ext.form ...
- 按键板的原理与实现 扩展GPIO
在系统可用的GPIO口数量有限的情况下实现按键板的另一个选择就是:扩展GPIO口.扩展GPIO的方法有很多,市场上已经有很多种类的GPIO口扩展器件,但是从成本上考虑,但它们总是显得昂贵.对于按键板的 ...
- MyBatis逆向工程生成配置 generator (生成pojo、mapper.xml、mapper.java)
MyBatis逆向工程生成 mybatis需要程序员自己编写sql语句,mybatis官方提供逆向工程,可以针对单表自动生成mybatis执行所需要的代码(mapper.java.mapper.xml ...
- AVR单片机教程——随机点亮LED
之前我们做的闪烁LED和流水灯,灯效都是循环的.这次我们来尝试一些不一样的——每一次随机选择一个LED并点亮. 要实现随机的效果,我们要用C语言标准库中的相关设施: #define RAND_MAX ...
- drbd+nfs+keepalived
写的很详细 理论知识: https://www.cnblogs.com/kevingrace/p/5740940.html 写的很详细 负载: https://www.cnblogs.com/kevi ...
- 将图片画到canvas 上的几种方法(转)
转自:https://blog.csdn.net/qq_15009739/article/details/82809525
- intel ipp6.0安装过程
由于最近看到一个代码中使用了intel ipp6.0库,了解到,ipp6.0是一个很强大的图像处理库,将其与opencv联合使用,还能够加速opencv的处理,在图像处理的过程中,是一个很重要的工具. ...
- centos6克隆虚拟机后,网络无法访问和启动
使用vmware安装centos6虚拟机时, 克隆虚拟机后无法访问网络. 原因是:产生了重复的网卡信息** 克隆后在70-persistent-net.rules文件中会多一行网卡信息,把第一行网卡信 ...