题目描述:

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的数字可以无限制重复被选取。

说明:

所有数字(包括 target)都是正整数。
解集不能包含重复的组合。 
示例 1:

输入: candidates = [2,3,6,7], target = 7,
所求解集为:
[
[7],
[2,2,3]
]

示例 2:

输入: candidates = [2,3,5], target = 8,
所求解集为:
[
[2,2,2,2],
[2,3,3],
[3,5]
]

题目解析:(题解来自:LeetCode大佬liweiwei1419)

解题思路:
做搜索、回溯问题的套路是画图,代码其实就是根据画出的树形图写出来的。

那么如何画图呢?

根据题目中的用例,画一个图,因为是搜索,因此呈现的是一个树形结构图,并且在这个树形结构中会体现出递归结构。
根据题目中的用例,比对自己画图的结果和题目的结果的差异,如果一样,说明我们的分析没有错;如果不一样,说明我们的分析有误,一定有哪一个环节漏掉了或者分析错误,根据找到的问题调整算法。
下面我具体说一下,本来想展示草稿的,奈何本人画的图太难看,还是用软件画图给大家看吧。

针对示例 1:

输入: candidates = [2, 3, 6, 7],target = 7,所求解集为: [[7], [2, 2, 3]]

一开始我画的图是这样的:

思路:以 target = 7 为根结点,每一个分支做减法。减到 0 或者负数的时候,剪枝。其中,减到 0 的时候结算,这里 “结算” 的意思是添加到结果集。

说明:

1、一个蓝色正方形表示的是 “尝试将这个数到数组 candidates 中找组合”,那么怎么找呢?挨个减掉那些数就可以了。

2、在减的过程中,会得到 0和负数,也就是被我标红色和粉色的结点:

得到 0 是我们喜欢的,从 0 这一点向根结点走的路径(很可能只走过一条边,也算一个路径),就是一个组合,在这一点要做一次结算(把根结点到 0所经过的路径,加入结果集)。

得到负数就说明这条路走不通,没有必要再走下去了。

总结一下:在减的过程中,得到 0 或者负数,就没有必要再走下去,所以这两种情况就分别表示成为叶子结点。此时递归结束,然后要发生回溯。

画出图以后,我看了一下,我这张图画出的结果有 4 个 0,对应的路径是 [[2, 2, 3], [2, 3, 2], [3, 2, 2], [7]],而示例中的解集只有 [[7], [2, 2, 3]],很显然,我的分析出现了问题。问题是很显然的,我的结果集出现了重复。重复的原因是

后面分支的更深层的边出现了前面分支低层的边的值。

限于我的表达能力有限,大伙意会这句话就可以了,看一看重复的叶子结点 0 的路径,想一想重复的原因,或许你会比我说得更清楚更好。

但是这个问题也不难解决,把候选数组排个序就好了(想一下,结果数组排个序是不是也可以去重),后面选取的数不能比前面选的数还要小,即 “更深层的边上的数值不能比它上层的边上的数值小”,按照这种策略,剪枝就可以去掉重复的组合。

代码实现:

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Stack; public class Solution { private List<List<Integer>> res = new ArrayList<>();
private int[] candidates;
private int len; private void findCombinationSum(int residue, int start, Stack<Integer> pre) {
if (residue == 0) {
// Java 中可变对象是引用传递,因此需要将当前 path 里的值拷贝出来
res.add(new ArrayList<>(pre));
return;
}
// 优化添加的代码2:在循环的时候做判断,尽量避免系统栈的深度
// residue - candidates[i] 表示下一轮的剩余,如果下一轮的剩余都小于 0 ,就没有必要进行后面的循环了
// 这一点基于原始数组是排序数组的前提,因为如果计算后面的剩余,只会越来越小
for (int i = start; i < len && residue - candidates[i] >= 0; i++) {
pre.add(candidates[i]);
// 【关键】因为元素可以重复使用,这里递归传递下去的是 i 而不是 i + 1
findCombinationSum(residue - candidates[i], i, pre);
pre.pop();
}
} public List<List<Integer>> combinationSum(int[] candidates, int target) {
int len = candidates.length;
if (len == 0) {
return res;
}
// 优化添加的代码1:先对数组排序,可以提前终止判断
Arrays.sort(candidates);
this.len = len;
this.candidates = candidates;
findCombinationSum(target, 0, new Stack<>());
return res;
} public static void main(String[] args) {
int[] candidates = {2, 3, 6, 7};
int target = 7;
Solution solution = new Solution();
List<List<Integer>> combinationSum = solution.combinationSum(candidates, target);
System.out.println(combinationSum);
}
}

Leetcode题目39.组合总和(回溯+剪枝-中等)的更多相关文章

  1. 【LeetCode】39. 组合总和

    39. 组合总和 知识点:递归:回溯:组合:剪枝 题目描述 给定一个无重复元素的正整数数组 candidates 和一个正整数 target ,找出 candidates 中所有可以使数字和为目标数  ...

  2. [leetcode] 39. 组合总和(Java)(dfs、递归、回溯)

    39. 组合总和 直接暴力思路,用dfs+回溯枚举所有可能组合情况.难点在于每个数可取无数次. 我的枚举思路是: 外层枚举答案数组的长度,即枚举解中的数字个数,从1个开始,到target/ min(c ...

  3. [LeetCode] 39. 组合总和

    题目链接 : https://leetcode-cn.com/problems/combination-sum/ 题目描述: 给定一个无重复元素的数组 candidates 和一个目标数 target ...

  4. Java实现 LeetCode 39 组合总和

    39. 组合总和 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字 ...

  5. Leetcode题目46.全排列(回溯+深度优先遍历+状态重置-中等)

    题目描述: 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], ...

  6. leetcode刷题-39组合总和

    题目 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制重 ...

  7. LeetCode 39. 组合总和(Combination Sum)

    题目描述 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限 ...

  8. leetcode 39. 组合总和(python)

    给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制重复被选 ...

  9. leetcode 39 组合总和 JAVA

    题目: 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制 ...

随机推荐

  1. luogu4777[模板]拓展中国剩余定理题解

    题目链接 https://www.luogu.org/problemnew/show/P4777 分析 扩展\(CRT\)就是解决模数不互质的情况,说是扩展\(CRT\),其实都是扩欧... 先来考虑 ...

  2. Oracle学习笔记:rank、dense_rank、row_number、ntile等排序算法

    在 oracle 中有很多函数可以实现排序的功能,但是不尽相同.下面一一解说. row_number函数 功能:可实现分组排序,为数据行添加序号,多用于分页查询. 语法:row_number() ov ...

  3. 关于iReport5.6.0无法正常启动或者闪退或者JDK8不兼容的解决方案

    参考网址: https://blog.csdn.net/erlian1992/article/details/76359191?locationNum=6&fps=1 说白了 ,即 jaspe ...

  4. 如何用Java代码在SAP Marketing Cloud里创建contact数据

    我们可以使用SAP Marketing Cloud提供的Contact create OData API在第三方应用里创建Contact主数据. API地址:/sap/opu/odata/sap/CU ...

  5. 人工智能_4_k近邻_贝叶斯_模型评估

    机器学习常用算法 k近邻算法 求出未知点 与周围最近的 k个点的距离 查看这k个点中大多数是哪一类 根号((x已知-x未知)^2+(y已知-y未知)^2) 即平面间2点距离公式 收异常点影响较大,因此 ...

  6. JavaScript 的基本使用

    JavaScript 基本语法要求: 1.JS的写法是严格区分大小写的. 2.标识符的起名要求跟java的是一样的,第一个位置可以说字母.下划线.美元符号.其他位置可以字母.下划线.美元符号.数字. ...

  7. com.android.ddmlib.adbcommandrejectedexception:未经授权的设备。

    出现这种问题的原因是adb被杀死了,根据网上的说法在platform-tools下双击adb.exe 也启动不了. 在命令提示符中执行    adb kill-server adb start-ser ...

  8. STM32TIM定时器的影子寄存器

    1.简介 在STM32基本定时器的PSC预分频寄存器和ARR自动装载寄存器都有影子寄存器. 我们可以看到基本定时器功能框图上对应的寄存器有影子~ 2.功能 影子寄存器的存在起到一个缓冲的作用. 设置影 ...

  9. seaborn图形

    kdeplot(核密度估计图) 核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一.通过核密度估计图可以比较直观的看出数据样本本 ...

  10. Django:中间件与csrf

    一.中间件 什么是中间件 中间件有什么用 自定义中间件 中间件应用场景 二.csrf csrf token跨站请求伪造 一.中间件 什么是中间件 中间件顾名思义,是介于request与response ...