[2019牛客多校第四场][G. Tree]
题目链接:https://ac.nowcoder.com/acm/contest/884/G
题目大意:给定一个树\(A\),再给出\(t\)次询问,问\(A\)中有多少连通子图与树\(B_i\)同构。\(|A|\leq 2000,t\leq 10000, |B_i|\leq 12\)
题解:本题实际上是Codeforces 762F的加强版,关于这题的题解请戳这里
本题做法与之前这道题类似,也是预处理出树的最小表示法后进行树形DP,但是由于这里有多达一万次询问,所以考虑预处理枚举所有点数不超过\(12\)的树并求出他们的最小表示。对于如何预处理所有满足条件的树,我的方法是假设当前树的大小为\(n\),将第\(n+1\)个点作为当前点或其祖先的儿子加入树中,并继续递归直至树的大小达到\(12\)。这样预处理后会发现点数不超过\(12\)的树只有不到\(8000\)个。接下来就是要对树\(A\)进行DP,设f[i][j]表示有多少以\(i\)为根节点的子树与编号为\(j\)的树同构,再令\(ans[j]=\sum_{i=1}^{n}f[i][j]\),对于每个询问的答案就是\(\sum ans[j]\),这里的\(j\)是树\(B\)以不同点为根时对应的编号。
另外,在预处理的时候,我们同样可以预处理出当编号为\(j\)的树的根作为编号为\(i\)的树的根的儿子合并进来之后新树的编号,这样的合并关系只有不到\(14000\)组。这样对树\(A\)进行DP时就可以枚举所有这样的合并关系进行计算,将这一部分时间复杂度优化到\(O(14000n)\)
#include<bits/stdc++.h>
using namespace std;
#define N 2001
#define M 1<<12
#define MM 8001
#define NN 16773121
#define MOD 1000000007
int len(int x){return -__builtin_clz(x);}
int Union(int x,int y){return (x<<len(y))|y;}
int cnt;
set<int>id[];
int uni[MM][MM];
int num_to_id[NN];
int id_to_num[MM];
int f[N][MM];
vector<int>Id[];
struct Tree
{
int sz[N];
int n,ans[NN];
vector<int>d[N];
vector<int>mp[MM];
void read()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
d[i].clear();
for(int i=;i<=n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
d[u].push_back(v);
d[v].push_back(u);
}
}
int dfs(int cur,int pre)
{
sz[cur]=;
int res=;
vector<int>tmp;
for(auto nxt:d[cur])if(nxt!=pre)
tmp.push_back(dfs(nxt,cur)),sz[cur]+=sz[nxt];
sort(tmp.begin(),tmp.end());
for(auto x:tmp)res=Union(res,x);
res<<=;
if(!num_to_id[res])cnt++,mp[cnt]=tmp,id_to_num[cnt]=res,num_to_id[res]=cnt;
for(int i=;i<tmp.size();i++)
{
int R=;
for(int j=;j<tmp.size();j++)if(j!=i)
R=Union(R,tmp[j]);
R<<=;
uni[num_to_id[R]][num_to_id[tmp[i]]]=num_to_id[res];
}
id[sz[cur]].insert(num_to_id[res]);
return res;
}
void getID()
{
for(int i=;i<=n;i++)
dfs(i,);
}
void DP2(int cur,int pre)
{
sz[cur]=;
f[cur][]=;
for(auto nxt:d[cur])if(nxt!=pre)
{
DP2(nxt,cur);
for(int i=min(,sz[cur]);i>=;i--)
for(auto ii:Id[i])
{
int v=f[cur][ii];
if(!v)continue;
for(int j=;j<=min(-i,sz[nxt]);j++)
for(auto jj:Id[j])
(f[cur][uni[ii][jj]]+=v*f[nxt][jj]%MOD)%=MOD;
}
sz[cur]+=sz[nxt];
}
for(int i=;i<=min(,sz[cur]);i++)
for(auto ii:Id[i])
(ans[ii]+=f[cur][ii])%=MOD;
}
}S,T;
set<int>s;
int fa[];
vector<int>d[];
void fuck(int cur,int pre)
{
fa[cur]=pre;
for(int i=;i<=;i++)
T.d[i]=d[i];
T.n=cur;
if(cur==){T.dfs(,);return;}
int x=cur;
while(x!=)
{
d[x].push_back(cur+);
fuck(cur+,x);
d[x].pop_back();
x=fa[x];
}
}
int main()
{
fuck(,);
for(int i=;i<=;i++)
for(auto j:id[i])Id[i].push_back(j);
S.read();
S.DP2(,);
int t;
scanf("%d",&t);
while(t--)
{
T.read();
int ans=;
s.clear();
for(int i=;i<=T.n;i++)
s.insert(T.dfs(i,));
for(auto x:s)(ans+=S.ans[num_to_id[x]])%=MOD;
printf("%d\n",ans);
}
return ;
}
[2019牛客多校第四场][G. Tree]的更多相关文章
- 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数
目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...
- 2019牛客多校第四场 A meeting
链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...
- 牛客多校第四场 G Maximum Mode
链接:https://www.nowcoder.com/acm/contest/142/G来源:牛客网 The mode of an integer sequence is the value tha ...
- 2019牛客多校第四场B xor——线段树&&线性基的交
题意 给你 $n$ 个集合,每个集合中包含一些整数.我们说一个集合表示一个整数当且仅当存在一个子集其异或和等于这个整数.现在你需要回答 $m$ 次询问 ($l, r, x$),是否 $l$ 到 $r$ ...
- 2019牛客多校第四场J free——分层图&&最短路
题意 一张无向图,每条边有权值,可以选择不超过 $k$ 条路使其权值变成0,求 $S$ 到 $T$ 的最短路.(同洛谷 P4568) 分析 首先,分层图最短路可以有效解决这种带有 「阶段性」的最短路, ...
- 2019牛客多校第四场A meeting——树的直径
题意: 一颗 $n$ 个节点的树上标有 $k$ 个点,找一点使得到 $k$ 个关键结点的最大距离最小. 分析: 问题等价于求树的直径,最小距离即为直径除2向上取整. 有两种求法,一是动态规划,对于每个 ...
- 2019牛客多校第四场D-triples I 贪心
D-triples 题意 给你一个\(n\),问至少有几个数或运算起来可以等于\(n\),并且输出数量和这个几个数.题目说明给的\(n\)一定符合条件(不会输出\(n= 1\) 之类不存在情况). 思 ...
- 2019牛客多校第四场C-sequence(单调栈+线段树)
sequence 题目传送门 解题思路 用单调栈求出每个a[i]作为最小值的最大范围.对于每个a[i],我们都要乘以一个以a[i]为区间内最小值的对应的b的区间和s,如果a[i] > 0,则s要 ...
- 2019牛客多校第四场K number dp or 思维
number 题意 给一个数字串,问有几个子串是300的倍数 分析 dp写法:这题一看就很dp,直接一个状态dp[i][j]在第i位的时候膜300的余数是j左过去即可.这题比赛的时候样例老是少1,后面 ...
随机推荐
- Java 包的理解与使用
java中的包可以分为两种:内置包.用户自己定义的包.这里介绍的是用户自定义的包. 一.包的使用 1.创建PackageTest.java package com.packtest; public c ...
- LaTeX 一些用法实例(并列图片、并列表格、算法代码示例、页眉太长、下划线,等)
横向并列两个图片 \begin{figure} \begin{minipage}{0.49\linewidth} \centering \includegraphics[width=6.5cm]{Si ...
- tomcat中server.xml各项配置详解
详见大佬的文章,乐于做大佬文章的搬运工. http://www.cnblogs.com/starhu/p/5599773.html
- Pod——状态和生命周期管理及探针和资源限制
一.什么是Podkubernetes中的一切都可以理解为是一种资源对象,pod,rc,service,都可以理解是 一种资源对象.pod的组成示意图如下,由一个叫”pause“的根容器,加上一个或多个 ...
- SpringBoot exception异常处理机制源码解析
一.Spring Boot默认的异常处理机制 1:浏览器默认返回效果 2:原理解析 为了便于源码跟踪解析,在·Controller中手动设置异常. @RequestMapping(value=&quo ...
- C语言之反汇编揭秘
title: 'C语言之反汇编揭秘' tags: 汇编与反汇编 categories: 汇编与反汇编 copyright: true abbrlink: 'b1c9' date: 2019-09-07 ...
- rman备份跳过read only数据文件,减少备份总量,加快备份时间
客户需求,RMAN备份时间过长,想缩短备份时间,优化备份. 客户基于表空间进行历史数据归档的方式,将历史的表空间进行read only,想让RMAN跳过只读表空间,减少RMAN备份的数据总量,从而缩短 ...
- MySQL5.7主从同步配置
主从同步,将主服务器(master)上的数据复制到从服务器(slave). 应用场景 读写分离,提高查询访问性能,有效减少主数据库访问压力. 实时灾备,主数据库出现故障时,可快速切换到从数据库. 数据 ...
- php 获取某个月的周一
今天有个朋友问了一个问题,最后解决了下,先整理记下来,后面用到了再说 function getMonday($month = ''){ if(empty($month)){ $month = date ...
- (一)weblogic11g的安装配置
一.安装 找到weblogic安装包,小编这里用的是wls1034_win32.exe版本,双击打开 完成后运行快速启动,打开快速启动界面,配置weblogic.如果没有打开,还可以在开始菜单中找到q ...