堆排序

使用优先队列-最小/最大堆可实现。

优先队列

优先队列是一种能完成以下任务的队列:插入一个数值,取出最小的数值(获取数值,并且删除)。优先队列可以用二叉树来实现,我们称这种为二叉堆。

最小堆

最小堆是二叉堆的一种,是一颗完全二叉树(一种平衡树), 其特点是父节点的键值总是小于或者等于子节点。

实现细节(两个操作):

push:向堆中插入数据时,首先在堆的末尾插入数据,然后不断向上提升,直到没有大小颠倒时。
pop:从堆中删除最小值时首先把最后一个值复制到根节点上,并且删除最后一个数值。然后不断向下交换, 直到没有大小颠倒为止。在向下交换过程中,如果有两个子儿子都小于自己,就选择较小的 插入时间复杂度O(logN),删除时间复杂度O(logN),两个二叉堆合并时间复杂性O(NlogN).

最大堆同理。可用此结构实现堆排序算法。

/*
最小堆
*/
package main import "fmt" type Heap struct {
Size int
Elems []int
} func NewHeap(MaxSize int) *Heap {
h := new(Heap)
h.Elems = make([]int, MaxSize, MaxSize)
return h
} func (h *Heap) Push(x int) {
h.Size++ // i是要插入节点的下标
i := h.Size
for {
if i <= 0 {
break
} // parent为父亲节点的下标
parent := (i - 1) / 2
// 如果父亲节点小于等于插入的值,则说明大小没有跌倒,可以退出
if h.Elems[parent] <= x {
break
} // 互换当前父亲节点与要插入的值
h.Elems[i] = h.Elems[parent]
i = parent
} h.Elems[i] = x
} func (h *Heap) Pop() int {
if h.Size == 0 {
return 0
} // 取出根节点
ret := h.Elems[0] // 将最后一个节点的值提到根节点上
h.Size--
x := h.Elems[h.Size] i := 0
for {
// a,b为左右两个子节点的下标
a := 2*i + 1
b := 2*i + 2 // 没有左子树
if a >= h.Size {
break
} // 有右子树,找两个子节点中较小的值
if b < h.Size && h.Elems[b] < h.Elems[a] {
a = b
} // 父亲小直接退出
if h.Elems[a] >= x {
break
} // 交换
h.Elems[i] = h.Elems[a]
i = a
} h.Elems[i] = x
return ret
} func (h *Heap) Display() {
fmt.Printf("Size:%d,Elems:%#v\n", h.Size, h.Elems[0:h.Size])
} func main() {
h := NewHeap(100)
h.Display() h.Push(3)
h.Push(6)
h.Push(7)
h.Push(27)
h.Push(1)
h.Push(2)
h.Push(3)
h.Display() fmt.Println(h.Pop())
h.Display()
fmt.Println(h.Pop())
h.Display()
fmt.Println(h.Pop())
h.Display()
fmt.Println(h.Pop())
h.Display()
fmt.Println(h.Pop())
h.Display()
}

左偏树

最小堆/最大堆如果两个堆进行合并,时间复杂度较高,左偏树是可合并的二叉堆,首先满足所有的堆的性质,其外,各种操作时间复杂度都是O(logN)。

左偏树的树节点需要保存的信息有:

1.左右子树节点编号
2.此节点到有空子结点的最短距离len(空子节点的节点,就是子节点数不足2个的节点)
3.自身权值 左偏就是每个节点的左子节点的len不小于右子节点的len(但并不代表左子节点数一定不小于右子节点数),那么可知左偏树中一个节点的距离就是右儿子距离+1(或没有右儿子),且左右子树都是左偏树。 合并树A和树B的操作方法如下: 1.如果A或B有一个是空树,返回另一个。
2.如果A的优先级比B低,交换A,B。(确保左堆根节点小于右堆根节点)
3.递归处理,将B和A的右子树合并。(B,Right(A)递归处理)
4.如果合并过后A的右儿子距离大于A的左儿子,交换A的左右儿子。(确保左儿子距离大于右儿子)
5.更新A的距离。

左偏树合并操作合并的是两棵左偏树,对于堆的插入,就是合并一棵树和一个节点,对于堆的删除,就是合并根的两棵子树。

/*
左偏树
*/
package main import (
"fmt"
) type LeftistHeap struct {
Root *Node
} type Node struct {
Data int
Distance int
LeftChild *Node
RightChild *Node
} func New() *LeftistHeap {
h := new(LeftistHeap)
return h
} func (n *Node) Dist() int {
if n == nil {
return -1 // 空节点距离为-1
}
return n.Distance
} func (h *LeftistHeap) Push(data int) {
newNode := new(Node)
newNode.Data = data h.Root = h.Root.Merge(newNode)
} func (h *LeftistHeap) Pop() int {
if h.Root == nil {
return -1 // pop完
} data := h.Root.Data
h.Root = h.Root.LeftChild.Merge(h.Root.RightChild)
return data
} // 合并两棵左偏树
func (A *Node) Merge(B *Node) *Node { // 一棵树为空返回另外一棵树
if A == nil {
return B
} if B == nil {
return A
} leftHeap := A
rightHeap := B // 使左堆做为合并后的根节点
if A.Data > B.Data {
leftHeap = B
rightHeap = A
} // 递归:左堆的右子树和右堆进行合并,作为左堆右子树
leftHeap.RightChild = leftHeap.RightChild.Merge(rightHeap) // 树翻转左右,确保左儿子距离大于右子
if leftHeap.RightChild.Dist() > leftHeap.LeftChild.Dist() {
leftHeap.LeftChild, leftHeap.RightChild = leftHeap.RightChild, leftHeap.LeftChild
} if leftHeap.RightChild == nil {
leftHeap.Distance = 0
} else {
leftHeap.Distance = leftHeap.RightChild.Dist() + 1
} return leftHeap
} // 递归先序排序
func (n *Node) Display() {
if n == nil {
fmt.Println("null")
return
}
fmt.Println(n.Data)
fmt.Printf("Node:%d,Left child:", n.Data)
if n.LeftChild != nil {
n.LeftChild.Display()
} else {
fmt.Print("null")
}
fmt.Println()
fmt.Printf("Node:%d,Right child:", n.Data)
if n.RightChild != nil {
n.RightChild.Display()
} else {
fmt.Print("null")
}
fmt.Println()
} func (h *LeftistHeap) Display() {
h.Root.Display()
} func main() {
n := New()
n.Display() fmt.Println("---") n.Push(3)
n.Push(1)
n.Push(5)
n.Push(8) n.Display() fmt.Println(n.Pop())
fmt.Println(n.Pop())
fmt.Println(n.Pop())
fmt.Println(n.Pop())
fmt.Println(n.Pop())
fmt.Println(n.Pop()) }

转载请注明:http://www.lenggirl.com/algorithm/heap.html

面试经典算法:优先队列,最大堆,堆排序,左偏树Golang实现的更多相关文章

  1. HDU 1512 Monkey King(左偏树+并查集)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1512 [题目大意] 现在有 一群互不认识的猴子,每个猴子有一个能力值,每次选择两个猴子,挑出他们所 ...

  2. 黄源河《左偏树的应用》——数字序列(Baltic 2004)

    这道题哪里都找不到. [问题描述] 给定一个整数序列a1, a2, … , an,求一个不下降序列b1 ≤ b2 ≤ … ≤ bn,使得数列{ai}和{bi}的各项之差的绝对值之和 |a1 - b1| ...

  3. 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)

    1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...

  4. 洛谷P4331 [BOI2004] Sequence 数字序列 [左偏树]

    题目传送门 数字序列 题目描述 给定一个整数序列 a1​,a2​,⋅⋅⋅,an​ ,求出一个递增序列 b1​<b2​<⋅⋅⋅<bn​ ,使得序列 ai​ 和 bi​ 的各项之差的绝对 ...

  5. Monkey King(左偏树 可并堆)

    我们知道如果要我们给一个序列排序,按照某种大小顺序关系,我们很容易想到优先队列,的确很方便,但是优先队列也有解决不了的问题,当题目要求你把两个优先队列合并的时候,这就实现不了了 优先队列只有插入 删除 ...

  6. 左偏树(p3377)

    题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删除或第x和第y个数在用一个堆 ...

  7. 左偏树(Leftist Heap/Tree)简介及代码

    左偏树是一种常用的优先队列(堆)结构.与二叉堆相比,左偏树可以高效的实现两个堆的合并操作. 左偏树实现方便,编程复杂度低,而且有着不俗的效率表现. 它的一个常见应用就是与并查集结合使用.利用并查集确定 ...

  8. luogu【P3377】 【模板】左偏树

    左偏树 顾名思义 向左偏的树 (原题入口) 它有啥子用呢??? 当然是进行堆的合并啦2333普通堆的合并其实是有点慢的(用优先队列的话 只能 一个pop 一个push 来操作 复杂度就是O(n log ...

  9. 『左偏树 Leftist Tree』

    新增一道例题 左偏树 Leftist Tree 这是一个由堆(优先队列)推广而来的神奇数据结构,我们先来了解一下它. 简单的来说,左偏树可以实现一般堆的所有功能,如查询最值,删除堆顶元素,加入新元素等 ...

随机推荐

  1. oracle之按表名查询表字段结构

    工作中查看oracle表结构, 1,pl/sql或其他开发工具可以输入表名然后ctr+点击表名就可以看见表结构: 2,表字段过多,如果给第三方截图看比较麻烦,得截好几次,容易看眼花,可以查询如下sql ...

  2. OpenResty之 limit.count 模块

    原文: lua-resty-limit-traffic/lib/resty/limit/count.md 1. 示例 http { lua_shared_dict my_limit_count_sto ...

  3. (转)MitmProxy+APPnium安装使用

    MitmProxy+APPnium安装使用 2019年08月19日 11:09:48 jiageibuuuyi 阅读数 61更多 分类专栏: python学习笔记   版权声明:本文为博主原创文章,遵 ...

  4. HearthBuddy 调试肯瑞托法师寒冰屏障的配合

    35疯狂的科学家 63肯瑞托法师 13过期货物专卖商 64对面的英雄术士 比较好的出牌策略是,肯瑞托法师+寒冰屏障 ailoop1 startEnemyTurnSimThread1start prin ...

  5. 有关Python的import...和from...import...的区别

    1.语法分析:首先from A import a1 是从A模块导入a1工具(可以是某个 函数,全局变量,类),import A是导入整个A模块的全部内容(包括全部的函数,全局变量,类). 2.内存分析 ...

  6. 骑行川藏--新都桥&塔公草原

    新都桥 塔公草原 新都桥,位于四川省甘孜藏族自治州康定市西部地区,距市区81公里: 别名:东俄罗,一个镇名.海拔约3300米,没有突出的标志性景观,沿线有10余公里被称为“摄影家走廊”. 神奇光线,无 ...

  7. Angular 开发工具介绍

    1.Webstorm2.Visual Studio Code  (推荐) 记得 安装angular插件

  8. web前端之es6对象的扩展

    1.属性的简洁表示法 2.属性名表达式 表达式作为对象的属性名 3.方法的 name 属性 例如:函数的name 属性,返回函数名. 4.Object.is() ES 比较两个值是否相等,只有两个运算 ...

  9. 自定义string类

    #include <iostream> #include <cstring> using namespace std; class String; class Data{ // ...

  10. Linux -- Proactor(及其与Reactor的比较)

    高并发服务器常由多线程+IO复用服务器(one event loop per thread) 两种I/O多路复用模式:Reactor和Proactor 一般地,I/O多路复用机制都依赖于一个事件多路分 ...