【线性代数】4-1:四个正交子空间(Orthogonality of the Four Subspace)
title: 【线性代数】4-1:四个正交子空间(Orthogonality of the Four Subspace)
categories:
- Mathematic
- Linear Algebra
keywords: - Orthogonality
- Four Subspace
- Orthogonal Complements
- Fundamental Theorem of Linear Algebra
- Combining Bases from Subspaces
- Split
toc: true
date: 2017-10-17 09:28:42
Abstract: 本篇介绍正交性,向量正交,矩阵正交,子空间正交
Keywords: Orthogonality,Four Subspace,Orthogonal Complements,Fundamental Theorem of Linear Algebra ,Combining Bases from Subspaces,Split
开篇废话
这次真的是好久没写博客了,十一去了一趟湖南,感受了下山村生活,不得不说,真的能净化人心,村里的人感觉比城里人的生活的更自然,更像人。感觉城里人活的更像机器。
十一之前读的这一章内容,果不其然,只记得大概内容了,回来又重新看了一遍,又发现不少之前没发现的东西,经验一次又一次的告诉我,书要多读几遍,这句话我之前就说过,但是自己都做不到,也是惭愧。
Orthogonality
这个地方大师Gilbert写了关于AxAxAx的三个境界:
- This is only a number
- It is combination of column vectors
- It shows Subspaces
这个跟王国维的人生三大境界有的一拼,这里必须要展示下我的文学功底了(其实是上高中抄别人作文学会的)–"古今之成大事业、大学问者,必经过三种之境界:"昨夜西风凋碧树。独上高楼,望尽天涯路。"此第一境也。"衣带渐宽终不悔,为伊消得人憔悴。"此第二境也。"众里寻他千百度,蓦然回首,那人却在灯火阑珊处。“此第三境也。此等语皆非大词人不能道。然遽以此意解释诸词,恐为晏欧诸公所不许也。” "
差不多就这意思,对事物的追求是逐渐加深的,当我们走到了深处,木然回首,一看,线性代数也就那么回事。
不扯没用的,继续说正交(orthogonality)
正交的三个层次是
- 向量正交
- 矩阵正交
- 子空间正交
两个向量正交是说他们的dot product为0
本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-4-1转载请标明出处
【线性代数】4-1:四个正交子空间(Orthogonality of the Four Subspace)的更多相关文章
- 【线性代数】3-6:四个子空间的维度(Dimensions of the Four Subspaces)
title: [线性代数]3-6:四个子空间的维度(Dimensions of the Four Subspaces) categories: Mathematic Linear Algebra ke ...
- OpenCASCADE Quaternion
OpenCASCADE Quaternion eryar@163.com Abstract. The quaternions are members of a noncommutative divis ...
- 旋转矩阵 The Rotation Matrix
参考: http://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/geometry/how-does ...
- 《利用python进行数据分析》读书笔记--第四章 numpy基础:数组和矢量计算
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说, ...
- [译]学习IPython进行交互式计算和数据可视化(四)
第三章 使用Python进行数字计算 尽管IPython强大的shell和扩展后的控制台能被任何Python程序员使用,但是这个工具最初是科学奖为科学家设计的.它的主要设计目标就是为使用Python进 ...
- 斯坦福大学CS224d基础1:线性代数回顾
转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...
- OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的!
OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的! 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致&q ...
- MIT线性代数课程 总结与理解-第一部分
概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...
- 掌握numpy(四)
数组的累加(拼接) 在前面讲了使用切片方法能够对数组进行切分,使用copy对切片的数组进行复制,那么数组该如何拼接呢? a1 = np.full((2,3),1)#填充数组 a2 = np.full( ...
随机推荐
- python学习-6 猜拳小游戏
import random # 调用随机数模块 pc = random.randint(1,3) # 产生1-3的随机数 print("来玩个猜拳游戏吧!") a = '石头' b ...
- 用函数来编写实现strlen()函数功能
strlen( )函数: 测试字符串实际长度的函数,它的返回值是字符串中字符的个数(不包含’\0’) //strlen( )函数:测试字符串实际长度的函数,它的返回值是字符串中字符的个数(不包含’\0 ...
- User space(用户空间) 与 Kernel space(内核空间)
出处: User space 与 Kernel space (整理)用户空间_内核空间以及内存映射 学习 Linux 时,经常可以看到两个词:User space(用户空间)和 Kernel spac ...
- MySQL create table语法中的key与index的区别
在create table的语句中,key和index混淆在一起,官方手册中的解释是这样: KEY is normally a synonym for INDEX. The key attribute ...
- Spring Boot(一) 初步理解Spring Boot
一.Spring Boot所解决的问题 Java开发十分笨重:繁多的配置.低下的开发效率.复杂的部署流程以头疼的第三方技术集成. Spring Boot的理念:习惯优于配置——项目中存在大量的配置,此 ...
- 怎样获取页面中所有带href属性的标签集合
使用: document.links document.links instanceof HTMLCollection; 注意: 1. a 标签和 area 标签可以设置 href属性, 因此可以被获 ...
- [转载]clip gradient抑制梯度爆炸
[转载]clip gradient抑制梯度爆炸 来源:https://blog.csdn.net/u010814042/article/details/76154391 1.梯度爆炸的影响 在一个只有 ...
- 从零开始使用mocha测试
mocha 需要在node环境下跑,请确保已经安装了node 1.新建一个文件夹 test 2.命令行切换到test目录下,执行命令:npm init ,出现选择按enter,一系列选择完成之 ...
- 微信小程序带参数生成二维码
wx.request({ url: 'https://api.weixin.qq.com/cgi-bin/token', header: { 'content-type': 'application/ ...
- jQuery EasyUI 应用 – 创建 CRUD 应用(表格)
jQuery EasyUI 应用 - 创建 CRUD 应用 本节介绍如何创建CRUD应用. CRUD分别是指在做计算处理时的增加(Create).读取查询(Retrieve).更新(Update)和删 ...
