1045 Favorite Color Stripe (30 分)

Eva is trying to make her own color stripe out of a given one. She would like to keep only her favorite colors in her favorite order by cutting off those unwanted pieces and sewing the remaining parts together to form her favorite color stripe.

It is said that a normal human eye can distinguish about less than 200 different colors, so Eva's favorite colors are limited. However the original stripe could be very long, and Eva would like to have the remaining favorite stripe with the maximum length. So she needs your help to find her the best result.

Note that the solution might not be unique, but you only have to tell her the maximum length. For example, given a stripe of colors {2 2 4 1 5 5 6 3 1 1 5 6}. If Eva's favorite colors are given in her favorite order as {2 3 1 5 6}, then she has 4 possible best solutions {2 2 1 1 1 5 6}, {2 2 1 5 5 5 6}, {2 2 1 5 5 6 6}, and {2 2 3 1 1 5 6}.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤200) which is the total number of colors involved (and hence the colors are numbered from 1 to N). Then the next line starts with a positive integer M (≤200) followed by M Eva's favorite color numbers given in her favorite order. Finally the third line starts with a positive integer L (≤10​4​​) which is the length of the given stripe, followed by L colors on the stripe. All the numbers in a line a separated by a space.

Output Specification:

For each test case, simply print in a line the maximum length of Eva's favorite stripe.

Sample Input:

6
5 2 3 1 5 6
12 2 2 4 1 5 5 6 3 1 1 5 6

Sample Output:

7

思路:设dp[i][j]为考虑从第0到i种颜色,考虑到长度从0到第j时的最长结果,那么状态转移方程是显而易见的。

代码如下:

#include<bits/stdc++.h>
using namespace std;
int n,m,l;
int color[205];
int a[10004];
int dp[205][10005];
int main()
{
cin>>n;
cin>>m;
for(int i=0;i<m;i++)cin>>color[i];
cin>>l;
for(int i=0;i<l;i++)cin>>a[i];
dp[0][0]=(color[0]==a[0])?1:0;
for(int j=1;j<l;j++)dp[0][j]=(color[0]==a[j])?dp[0][j-1]+1:dp[0][j-1];
for(int i=1;i<m;i++)dp[i][0]=(color[i]==a[0])?1:dp[i-1][0];
for(int i=1;i<m;i++)
{
for(int j=1;j<l;j++)
{
if(color[i]==a[j])dp[i][j]=max(dp[i-1][j],dp[i][j-1]+1);
else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
cout<<dp[m-1][l-1]<<endl;
return 0;
}

pat 甲级 1045 ( Favorite Color Stripe ) (动态规划 )的更多相关文章

  1. PAT甲级1045. Favorite Color Stripe

    PAT甲级1045. Favorite Color Stripe 题意: 伊娃正在试图让自己的颜色条纹从一个给定的.她希望通过剪掉那些不必要的部分,将其余的部分缝合在一起,形成她最喜欢的颜色条纹,以保 ...

  2. PAT 甲级 1045 Favorite Color Stripe (30 分)(思维dp,最长有序子序列)

    1045 Favorite Color Stripe (30 分)   Eva is trying to make her own color stripe out of a given one. S ...

  3. PAT 甲级 1045 Favorite Color Stripe

    https://pintia.cn/problem-sets/994805342720868352/problems/994805437411475456 Eva is trying to make ...

  4. PAT 甲级 1045 Favorite Color Stripe(DP)

    题目链接 Favorite Color Stripe 题意:给定$A$序列和$B$序列,你需要在$B$序列中找出任意一个最长的子序列,使得这个子序列也是$A$的子序列 (这个子序列的相邻元素可以重复) ...

  5. 1045 Favorite Color Stripe 动态规划

    1045 Favorite Color Stripe 1045. Favorite Color Stripe (30)Eva is trying to make her own color strip ...

  6. PAT甲级——A1045 Favorite Color Stripe

    Eva is trying to make her own color stripe out of a given one. She would like to keep only her favor ...

  7. PAT 1045 Favorite Color Stripe[dp][难]

    1045 Favorite Color Stripe (30)(30 分) Eva is trying to make her own color stripe out of a given one. ...

  8. 1045 Favorite Color Stripe (30分)(简单dp)

    Eva is trying to make her own color stripe out of a given one. She would like to keep only her favor ...

  9. 1045. Favorite Color Stripe (30) -LCS允许元素重复

    题目如下: Eva is trying to make her own color stripe out of a given one. She would like to keep only her ...

随机推荐

  1. easyui datagrid 合并相同行

    $.extend($.fn.datagrid.methods, { autoMergeCells: function (jq, fields) { return jq.each(function () ...

  2. Date及DateFormat用法

    Date 与DateFormat之间的转化String <————>Date Date与Calendar 之间的转化Long<————>Date 日历小程序 Scanner i ...

  3. java中的exception stack有时候不输出的原因

    有时候,我们在看java错误日志时,只看到一个java.lang.NullPointerException,却没有看到错误的栈,原因是启动时候有一项参数可以选择配置:OmitStackTraceInF ...

  4. 旋转动画(RotateTransform)

    Silverlight的基础动画包括偏移.旋转.缩放.倾斜和翻转动画,这些基础动画毫无疑问是在Silverlight中使用得最多的动画效果,其使用也是非常简单的.相信看过上一篇<偏移动画(Tra ...

  5. luogu4677山区建小学题解--区间DP

    题目链接 https://www.luogu.org/problemnew/show/P4677 分析 这道题方法跟之前题不一样,我们相当于枚举一个左右端点来线性扩展,同时划分断点进行决策 \(f[i ...

  6. Heap(堆)与Stack(栈)的区别详解

    在了解堆与栈之前,我们想来了解下程序的内存分配 一个编译的程序占用的内存分为以下几个部分  :  1.栈区(stack)—   由编译器自动分配释放   ,存放函数的参数值,局部变量的值等.其    ...

  7. Redis的最常见面试问题

    Redis的那些最常见面试问题[转] 1.什么是redis? Redis 是一个基于内存的高性能key-value数据库. 2.Reids的特点 Redis本质上是一个Key-Value类型的内存数据 ...

  8. String s=new String("xyz");创建了几个String Object?二者之前的区别是什么?

    两个.第一个对象是字符串常量"xyz",第二个对象是new String("xyz")的时候产生的,在堆中分配内存给这个对象,只不过这个对象的内容是指向字符串常 ...

  9. 第一章、Django概述

    目录 第一章.Django概述 一.了解软件开发架构 二.HTTP协议 三.响应状态码 四.请求方式 五.基于wsgiref模块 六..动静态网页 七.python三大主流web框架 八.安装Djan ...

  10. API开发之接口安全(四)----sign的唯一性

    r如何解决sign的唯一性呢,在以往的经验中,我们都是通过标识来确定 如果有 那就用过如果没有那就是没用过 当然我们还需要将sign存储起来 这样我们才能更好的去判断他是否用过 存储的话 我们有几种方 ...