Contest Info


[Practice Link](https://ac.nowcoder.com/acm/contest/140#question)

Solved A B C D E F G H I J K
6/10 Ø . . Ø . . Ø Ø Ø Ø .
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • . 没有尝试

Solutions


### A. run

题意:

白云每次可以移动\(1\)米或者\(k\)米,询问移动的米数在\([L, R]\)范围内的方案数有多少。

思路:

\(dp[i][0/1]\)表示到第\(i\)米,是通过\(1\)米的方式过来的还是\(k\)米的方式过来的,递推即可。

代码:

#include <bits/stdc++.h>
using namespace std; #define N 100010
const int p = 1e9 + 7;
int f[N][2], g[N];
int q, k, l, r;
void add(int &x, int y) {
x += y;
if (x >= p) {
x -= p;
}
} int main() {
scanf("%d%d", &q, &k);
memset(f, 0, sizeof f);
f[0][0] = 1;
for (int i = 0; i <= 100000; ++i) {
add(f[i + 1][0], (f[i][0] + f[i][1]) % p);
if (i + k <= 100000) {
add(f[i + k][1], f[i][0]);
}
}
memset(g, 0, sizeof g);
for (int i = 1; i <= 100000; ++i) {
g[i] = g[i - 1];
add(g[i], f[i][0]);
add(g[i], f[i][1]);
}
while (q--) {
scanf("%d%d", &l, &r);
printf("%d\n", (g[r] - g[l - 1] + p) % p);
}
return 0;
}

### D. monrey

题意:

有\(n\)个物品,从\(1\)到\(n\)的顺序去访问,身上最多只能携带一个物品,每次可以买进或者卖出物品,身上有无限的钱,问最后获得的利润最多是多少。

思路:

考虑将买入和卖出合并成一种操作,买入就是减去收益,卖出是增加收益,维护两个堆,遍历\(i\)个物品。

  • 如果当次是买入,那么去找之前收益最高的一个卖出操作,或者直接买入。
  • 如果当次是卖出,那么取找之前收益最高的一个买入操作。

代码:

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 100010
int n, a[N];
struct node {
ll tot; int cnt;
node() {}
node (ll tot, int cnt) : tot(tot), cnt(cnt) {}
bool operator < (const node &other) const {
if (tot == other.tot) {
return cnt > other.cnt;
}
return tot < other.tot;
}
}; int main() {
int T; scanf("%d", &T);
while (T--) {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
//0表示上一次操作是买入
//1表示上一次操作是卖出
priority_queue <node> pq[2];
node res = node(0, 0);
pq[0].push(node(-a[1], 1));
node t1, t2;
for (int i = 2; i <= n; ++i) {
pq[0].push(node(-a[i], 1));
if (!pq[0].empty()) {
t1 = pq[0].top();
pq[1].push(node(t1.tot + a[i], t1.cnt + 1));
}
if (!pq[1].empty()) {
t2 = pq[1].top();
pq[0].push(node(t2.tot - a[i], t2.cnt + 1));
}
if (!pq[1].empty()) {
res = max(res, pq[1].top());
}
}
printf("%lld %d\n", res.tot, res.cnt);
}
return 0;
}

### G. transform

题意:

一维坐标系上,在\(x_i\)有\(a_i\)个物品,每次移动一个物品的代价为\(2 \cdot abs(x_u - x_v)\),现在有\(T\)元钱,问在不超过\(T\)的代价下,移动物品使得

在同一个位置上的物品最多。

思路:

显然可以二分物品数量,check的时候枚举左端点,双指针维护右端点,多余的部分从右端回退。

再枚举右端点,反着搞一遍。

代码:

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 500010
int n, x[N], a[N];
ll sum[N], cost[N];
ll T, L, R, need;
int u; ll cost_l(int i) {
//将L+1~i的物品移动到i的费用
ll a = (sum[i] - sum[L]) * x[i] - (cost[i] - cost[L]);
//将i+1~R的物品移动到i的费用
ll b = (cost[R] - cost[i]) - x[i] * (sum[R] - sum[i]);
//将多余的物品从R移动到i的费用
ll c = (sum[R] - sum[L] - need) * (x[R] - x[i]);
return a + b - c;
} ll cost_r(int i) {
//将L+1~i的物品移动到i的费用
ll a = (sum[i] - sum[L]) * x[i] - (cost[i] - cost[L]);
//将i+1~R的物品移动到i的费用
ll b = (cost[R] - cost[i]) - x[i] * (sum[R] - sum[i]);
//将多余的物品从L移动到i的费用
ll c = (sum[R] - sum[L] - need) * (x[i] - x[L + 1]);
return a + b - c;
} bool check(ll x) {
need = x;
L = 0, R = 1, u = 0;
while (1) {
while (R < n && sum[R] - sum[L] < x) ++R;
if (sum[R] - sum[L] < x) break;
while (u < L) ++u;
while (u < R && cost_l(u) > cost_l(u + 1)) ++u;
if (cost_l(u) <= T) return 1;
++L;
}
L = n - 1, R = n, u = n;
while (1) {
while (L > 0 && sum[R] - sum[L] < x) --L;
if (sum[R] - sum[L] < x) break;
while (u > R) --u;
while (u > L && cost_r(u) > cost_r(u - 1)) --u;
if (cost_r(u) <= T) return 1;
--R;
}
return 0;
} int main() {
while (scanf("%d%lld", &n, &T) != EOF) {
T /= 2;
for (int i = 1; i <= n; ++i) {
scanf("%d", x + i);
}
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
sum[i] = sum[i - 1] + a[i];
cost[i] = cost[i - 1] + 1ll * a[i] * x[i];
}
ll l = 0, r = sum[n], res = -1;
while (r - l >= 0) {
ll mid = (l + r) >> 1;
if (check(mid)) {
l = mid + 1;
res = mid;
} else {
r = mid - 1;
}
}
printf("%lld\n", res);
}
return 0;
}

H. travel

题意:

询问一棵树上三条不相交路径的最大点权和。

思路:

\(f[u][x][y]\)表示以\(u\)为根的子树中,\(u\)的状态为\(x\),已经选了\(y\)条树链的最大点权和是多少。

三种状态:

  • 当前点不选
  • 当前点是链的一端
  • 当前点是链的拐点,即两条链的交界处

考虑转移:

  • 对于\(y\)的转移可以枚举\(y\)和\(i\),可以推出\(j\)
  • 注意\(y\)和\(i\)的枚举要降序枚举。
  • 对于当前点是拐点,转移过来的可以是链+链,也可以是拐点+不选
  • 对于当前点是链,可以是当前点是空,转移过来是链,也可以是当前点是链,转移过来的是空
  • 对于当前点不选,那么可以是任何状态转移过来,但是当前点不要选。
  • 最后答案是\(f[1][0][3]\)

代码:

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 400010
int n, a[N];
vector <vector<int>> G;
// 0 表示当前点不选
// 1 表示当前点链的一端
// 2 表示当前点是拐点
// 第三维表示已经选了0, 1, 2, 3条链
ll f[N][3][4]; void Max(ll &x, ll y) {
if (x < y) x = y;
}
void DFS(int u, int fa) {
f[u][1][0] = a[u];
for (auto v : G[u]) if (v != fa) {
DFS(v, u);
//转移2状态
for (int k = 2; ~k; --k) {
for (int i = k, j; ~i; --i) {
j = k - i;
//链+链
Max(f[u][2][k], f[u][1][i] + f[v][1][j]);
//拐点+空
Max(f[u][2][k], f[u][2][i] + f[v][0][j]);
}
} //转移1状态
for (int k = 2; ~k; --k) {
for (int i = k, j; ~i; --i) {
j = k - i;
Max(f[u][1][k], f[u][0][i] + a[u] + f[v][1][j]);
Max(f[u][1][k], f[u][1][i] + f[v][0][j]);
}
} //转移0状态
for (int k = 3; ~k; --k) {
for (int i = k, j; ~i; --i) {
j = k - i;
f[u][0][k] = max(f[u][0][k], f[u][0][i] + f[v][0][j]);
if (j) {
f[u][0][k] = max(f[u][0][k], f[u][0][i] + f[v][1][j - 1]);
f[u][0][k] = max(f[u][0][k], f[u][0][i] + f[v][2][j - 1]);
}
}
} }
for (int k = 3; k; --k) {
Max(f[u][0][k], f[u][1][k - 1]);
Max(f[u][0][k], f[u][2][k - 1]);
}
} int main() {
while (scanf("%d", &n) != EOF) {
memset(f, 0, sizeof f);
G.clear(); G.resize(n + 1);
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
for (int i = 1, u, v; i < n; ++i) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
DFS(1, 0);
printf("%lld\n", f[1][0][3]);
}
return 0;
}

I. car

题意:

在一个\(n \cdot n\)的二维平面上,要放置尽量多的小车,使得每一俩小车都要直行到它的对面边界,其中有一些障碍物,小车行驶的时候不能相撞,也不能碰到障碍物,

问最多放多少辆小车。

思路:

  • 显然每一行每一列最多放一辆小车。
  • 假设\(a[x][y]\)有障碍物,那么第\(x\)行第\(y\)列都不能有小车。
  • 如果\(n\)是奇数,那么第\(\frac{n + 1}{2}\)行,第\(\frac{n + 1}{2}\)只能放一辆小车。

代码:

#include <bits/stdc++.h>
using namespace std; #define N 100010
int n, m;
int vis[N][2]; int main() {
while (scanf("%d%d", &n, &m) != EOF) {
memset(vis, 0, sizeof vis);
for (int i = 1, x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
vis[x][0] = 1;
vis[y][1] = 1;
}
int ans = 0;
if (n & 1) {
if (vis[n / 2 + 1][0] == 0 && vis[n / 2 + 1][1] == 0) {
++ans;
vis[n / 2 + 1][0] = 1;
vis[n / 2 + 1][1] = 1;
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 2; ++j) {
ans += (vis[i][j] == 0);
}
}
printf("%d\n", ans);
}
return 0;
}

### J. farm

题意:

在\(n \cdot m\)的农田上,有\(n \cdot m\)棵植物,每棵植物只能施放第\(a[i][j]\)种肥料,有\(T\)次操作,每次操作时将\(x_1, y_1, x_2, y_2\)矩形内的作物都施上第\(k_i\)种肥料,

一旦作物被施上不是第\(a[i][j]\)种肥料,它就会立刻死亡。

问最后死亡的作物数目.

思路一:

考虑:

作物的施肥次数 = 第\(a[i][j]\)种肥料的施肥次数+其他种类肥料的施肥次数。

我们先二维差分求出所有作物的总的施肥次数。

然后将操作按\(k_i\)分类,用二维BIT维护二维前缀和,表示\(k_i\)操作下作物的施肥次数。

然后再枚举初始值为\(k_i\)的所有作物,判断它总的施肥次数以及第\(k_i\)种肥料的施肥次数是否相等,不相等就挂了。

时间复杂度:\(\mathcal{O}(nm + T \cdot log(n) \cdot log(m))\)

代码一:

#include <bits/stdc++.h>
using namespace std; #define N 1000010
#define pii pair <int, int>
#define fi first
#define se second
int n, m, q;
struct node {
int x[2], y[2];
node() {}
node(int x1, int y1, int x2, int y2) {
x[0] = x1; x[1] = x2;
y[0] = y1; y[1] = y2;
}
};
vector < vector <pii> > a;
vector < vector <node> > b; struct BIT {
vector < vector <int> > a;
void init() {
a.clear();
a.resize(n + 1);
for (int i = 0; i < n + 1; ++i) {
a[i].resize(m + 1);
}
}
void update(int x, int y, int v) {
for (int i = x; i <= n; i += i & -i) {
for (int j = y; j <= m; j += j & -j) {
a[i][j] += v;
}
}
}
void update(int x1, int y1, int x2, int y2, int v) {
update(x1, y1, v);
update(x2 + 1, y2 + 1, v);
update(x1, y2 + 1, -v);
update(x2 + 1, y1, -v);
}
int query(int x, int y) {
int res = 0;
for (int i = x; i > 0; i -= i & -i) {
for (int j = y; j > 0; j -= j & -j) {
res += a[i][j];
}
}
return res;
}
}bit; void read(int &x) {
x = 0; char ch;
while (!isdigit(ch = getchar()));
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
} int main() {
while (scanf("%d%d%d", &n, &m, &q) != EOF) {
a.clear();
a.resize(n * m + 1);
b.clear();
b.resize(n * m + 1);
bit.init();
for (int i = 1; i <= n; ++i) {
for (int j = 1, x; j <= m; ++j) {
read(x);
a[x].emplace_back(i, j);
}
}
for (int i = 1, k, x1, y1, x2, y2; i <= q; ++i) {
read(x1); read(y1); read(x2); read(y2); read(k);
b[k].push_back(node(x1, y1, x2, y2));
bit.update(x1, y1, x2, y2, 1);
}
int res = 0;
for (int i = 1; i <= n * m; ++i) {
for (auto it : b[i]) {
bit.update(it.x[0], it.y[0], it.x[1], it.y[1], -1);
}
for (auto it : a[i]) {
if (bit.query(it.fi, it.se) != 0) {
++res;
}
}
for (auto it : b[i]) {
bit.update(it.x[0], it.y[0], it.x[1], it.y[1], 1);
}
}
printf("%d\n", res);
}
return 0;
}

思路二:

考虑每次施肥的时候加上的是\(k_i\)而不是1,那么最终如果作物没有死,那么它的值应该是\(a[i][j] \cdot 施肥次数\)。

但是这样容易被卡,将权值映射成素数即可。

时间复杂度:\(\mathcal{O}(n + m + 10^7)\)

代码二:

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 15500010
int prime[1000010], tot;
bool check[N];
void init() {
tot = 0;
memset(check, 0, sizeof check);
for (int i = 2; i < N; ++i) {
if (!check[i]) {
prime[++tot] = i;
if (tot >= 1000000) break;
}
for (int j = 1; j <= tot; ++j) {
if (1ll * i * prime[j] >= N) break;
check[i * prime[j]] = 1;
if (i % prime[j] == 0) {
break;
}
}
}
}
int n, m, q;
vector <vector<int>> a, c;
vector <vector<ll>> b;
template <class T>
void up(vector <vector<T>> &vec, int x1, int y1, int x2, int y2, int v) {
vec[x1][y1] += v;
vec[x2 + 1][y2 + 1] += v;
vec[x1][y2 + 1] -= v;
vec[x2 + 1][y1] -= v;
}
template <class T>
void work(vector <vector<T>> &vec) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
vec[i][j] += vec[i - 1][j] + vec[i][j - 1] - vec[i - 1][j - 1];
}
}
} int main() {
init();
random_shuffle(prime + 1, prime + 1 + tot);
while (scanf("%d%d%d", &n, &m, &q) != EOF) {
a.clear(); a.resize(n + 2, vector <int> (m + 2, 0));
b.clear(); b.resize(n + 2, vector <ll> (m + 2, 0));
c.clear(); c.resize(n + 2, vector <int> (m + 2, 0));
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
scanf("%d", &a[i][j]);
}
}
int x[2], y[2], k;
while (q--) {
scanf("%d%d%d%d%d", x, y, x + 1, y + 1, &k);
up(b, x[0], y[0], x[1], y[1], prime[k]);
up(c, x[0], y[0], x[1], y[1], 1);
}
work(b); work(c);
int res = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (b[i][j] != c[i][j] * prime[a[i][j]]) {
++res;
}
}
}
printf("%d\n", res);
}
return 0;
}

思路三:

依据:

\[\begin{eqnarray*}
2c &=& a + b\\
2c^2 &=& a^2 + b^2 \\
\end{eqnarray*}
\]

当且仅当\(a = b = c\)时成立。

增加一个平方验证。

代码三:

#include <bits/stdc++.h>
using namespace std; #define ll long long
int n, m, q;
vector <vector<int>> a, c;
vector <vector<ll>> b;
template <class T>
void up(vector <vector<T>> &vec, int x1, int y1, int x2, int y2, int v) {
vec[x1][y1] += v;
vec[x2 + 1][y2 + 1] += v;
vec[x1][y2 + 1] -= v;
vec[x2 + 1][y1] -= v;
}
template <class T>
void work(vector <vector<T>> &vec) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
vec[i][j] += vec[i - 1][j] + vec[i][j - 1] - vec[i - 1][j - 1];
}
}
}
void read(int &x) {
x = 0; char ch;
while (!isdigit(ch = getchar()));
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
} int main() {
while (scanf("%d%d%d", &n, &m, &q) != EOF) {
a.clear(); a.resize(n + 2, v ector <int> (m + 2, 0));
b.clear(); b.resize(n + 2, vector <ll> (m + 2, 0));
c.clear(); c.resize(n + 2, vector <int> (m + 2, 0));
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
read(a[i][j]);
}
}
int x[2], y[2], k;
while (q--) {
read(x[0]); read(y[0]); read(x[1]); read(y[1]); read(k);
up(b, x[0], y[0], x[1], y[1], 1ll * k);
up(c, x[0], y[0], x[1], y[1], 1);
}
work(b); work(c);
int res = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (b[i][j] != c[i][j] * a[i][j]) {
++res;
}
}
}
printf("%d\n", res);
}
return 0;
}

思路四:

考虑两个数不同,那么它们的二进制位至少有一位是不同的。

那么考虑枚举二进制位,当每次操作的\(k_i\)的当前二进制上为一时那么施肥。

然后枚举每个作物:

  • 如果当前作物的\(a[i][j]\)的二进制位上为\(1\),如果施肥总次数与当次总次数不同,那么它挂了
  • 如果当前作物的\(a[i][j]\)的二进制位上为\(0\),如果存在施肥次数,那么它挂了

实现的时候开一维数组然后映射二维坐标就过了,开二维vector就T了。。

代码四:

#include <bits/stdc++.h>
using namespace std; #define N 4000010
#define y1 y_1
int x1[N], y1[N], x2[N], y2[N], k[N];
int n, m, q;
int a[N], b[N], c[N];
bool die[N];
int id(int x, int y) {
return (x - 1) * (m + 2) + y;
}
void up(int *f, int x1, int y1, int x2, int y2, int v) {
f[id(x1, y1)] += v;
f[id(x2 + 1, y2 + 1)] += v;
f[id(x1, y2 + 1)] -= v;
f[id(x2 + 1, y1)] -= v;
}
void work(int *f) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
f[id(i, j)] += f[id(i - 1, j)] + f[id(i, j - 1)] - f[id(i - 1, j - 1)];
}
}
} int main() {
while (scanf("%d%d%d", &n, &m, &q) != EOF) {
memset(b, 0, sizeof b);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
scanf("%d", &a[id(i, j)]);
}
}
for (int i = 1; i <= q; ++i) {
scanf("%d%d%d%d%d", x1 + i, y1 + i, x2 + i, y2 + i, k + i);
up(b, x1[i], y1[i], x2[i], y2[i], 1);
}
work(b);
for (int i = 15; i >= 0; --i) {
for (int _i = 1; _i <= n; ++_i) {
for (int _j = 1; _j <= m; ++_j) {
c[id(_i, _j)] = 0;
}
}
for (int j = 1; j <= q; ++j) {
if (k[j] >> i & 1) {
up(c, x1[j], y1[j], x2[j], y2[j], 1);
}
}
work(c);
for (int _i = 1; _i <= n; ++_i) {
for (int _j = 1; _j <= m; ++_j) {
if (a[id(_i, _j)] >> i & 1) {
if (b[id(_i, _j)] != c[id(_i, _j)]) {
die[id(_i, _j)] = 1;
}
} else if (c[id(_i, _j)]) {
die[id(_i, _j)] = 1;
}
}
}
}
int res = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
res += die[id(i, j)];
}
}
printf("%d\n", res);
}
return 0;
}

2018 Nowcoder Multi-University Training Contest 2的更多相关文章

  1. HDU 2018 Multi-University Training Contest 3 Problem A. Ascending Rating 【单调队列优化】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6319 Problem A. Ascending Rating Time Limit: 10000/500 ...

  2. 2018 Multi-University Training Contest 2

    题目链接:2018 Multi-University Training Contest 2 6318 Swaps and Inversions 题意:sum=x*逆序个数+交换次数*y,使sum最小 ...

  3. 2018 Multi-University Training Contest 1

    比赛链接:2018 Multi-University Training Contest 1 6301 Distinct Values 题意:输出一个长度为n的序列,要求满足m个区间的数都不相同,并且字 ...

  4. hdu 6301 Distinct Values (2018 Multi-University Training Contest 1 1004)

    Distinct Values Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  5. 2018 Multi-University Training Contest 4 Problem J. Let Sudoku Rotate 【DFS+剪枝+矩阵旋转】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6341 Problem J. Let Sudoku Rotate Time Limit: 2000/100 ...

  6. 2018 Multi-University Training Contest 4 Problem K. Expression in Memories 【模拟】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6342 Problem K. Expression in Memories Time Limit: 200 ...

  7. 2018 Multi-University Training Contest 4 Problem E. Matrix from Arrays 【打表+二维前缀和】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6336 Problem E. Matrix from Arrays Time Limit: 4000/20 ...

  8. 2018 Multi-University Training Contest 4 Problem L. Graph Theory Homework 【YY】

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6343 Problem L. Graph Theory Homework Time Limit: 2000 ...

  9. 2018 Multi-University Training Contest 4 Problem B. Harvest of Apples 【莫队+排列组合+逆元预处理技巧】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6333 Problem B. Harvest of Apples Time Limit: 4000/200 ...

  10. 2018 Multi-University Training Contest 1 Distinct Values 【贪心 + set】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6301 Distinct Values Time Limit: 4000/2000 MS (Java/Ot ...

随机推荐

  1. uboot 与 代码重定位

    ref: https://blog.csdn.net/dhauwd/article/details/78566668 https://blog.csdn.net/yueqian_scut/articl ...

  2. Nginx学习笔记(二):Nginx 连接处理 / 负载均衡

    Connection 在 Nginx 中,connection 就是对 TCP 连接的封装,其中包括连接的 socket,读写事件   Nginx 处理连接流程: 解析配置文件,得到需要监听的端口和I ...

  3. 2019杭电多校二 F. Fantastic Magic Cube (FWT)

    大意: 给定$N^3$立方体, 每个单位立方体权值为三个坐标异或, 每次沿坐标轴切一刀, 得分为两半内权值和的乘积, 求切成$n^3$块的最大得分. 可以发现得分与切法无关, 假设每个点权值为$a_i ...

  4. php底层源码之数组

    数组key和value的限制条件 <?php $arr = array( 1 => 'a', "1" => "b", 1.5 => &q ...

  5. MySQL5.7主从同步配置

    主从同步,将主服务器(master)上的数据复制到从服务器(slave). 应用场景 读写分离,提高查询访问性能,有效减少主数据库访问压力. 实时灾备,主数据库出现故障时,可快速切换到从数据库. 数据 ...

  6. [Vue]vue-router嵌套路由(子路由)

    总共添加两个子路由,分别命名Collection.vue(我的收藏)和Trace.vue(我的足迹) 1.重构router/index.js的路由配置,需要使用children数组来定义子路由,具体如 ...

  7. css:display:grid布局

    简介 CSS Grid布局 (又名"网格"),是一个基于二维网格布局的系统,主要目的是改变我们基于网格设计的用户接口方式.如我们所知,CSS 总是用于网页的样式设置,但它并没有起到 ...

  8. jQuery组件封装之return this.each(function () {});

    记录一下自己的调试历程 组件封装经常看到这么一段代码 $.fn.plugin = function (options) { return this.each(function (i,t) { new ...

  9. form-create教程:给内置组件和自定义组件添加事件

    本文将介绍form-create如何给内置组件和自定义组件添加事件 form-create 是一个可以通过 JSON 生成具有动态渲染.数据收集.验证和提交功能的表单生成器.并且支持生成任何 Vue ...

  10. 一线互联网常见的Java面试题,你颤抖了吗程序员

    跳槽不算频繁,但参加过不少面试(电话面试.face to face面试),面过大/小公司.互联网/传统软件公司,面糊过(眼高手低,缺乏实战经验,挂掉),也面过人,所幸未因失败而气馁,在此过程中不断查缺 ...