基于VS2010+ OpenCV2。代码可以读入视频,也可以读摄像头,两者的选择只需要在代码中稍微修改即可。对于视频来说,运行会先显示第一帧,然后我们用鼠标框选要跟踪的目标,然后跟踪器开始跟踪每一帧。对摄像头来说,就会一直采集图像,然后我们用鼠标框选要跟踪的目标,接着跟踪器开始跟踪后面的每一帧。具体代码如下:

#include <opencv2/opencv.hpp>  

using namespace cv;
using namespace std; // Global variables
Rect box;
bool drawing_box = false;
bool gotBB = false; // bounding box mouse callback
void mouseHandler(int event, int x, int y, int flags, void *param){
switch( event ){
case CV_EVENT_MOUSEMOVE:
if (drawing_box){
box.width = x-box.x;
box.height = y-box.y;
}
break;
case CV_EVENT_LBUTTONDOWN:
drawing_box = true;
box = Rect( x, y, 0, 0 );
break;
case CV_EVENT_LBUTTONUP:
drawing_box = false;
if( box.width < 0 ){
box.x += box.width;
box.width *= -1;
}
if( box.height < 0 ){
box.y += box.height;
box.height *= -1;
}
gotBB = true;
break;
}
} // tracker: get search patches around the last tracking box,
// and find the most similar one
void tracking(Mat frame, Mat &model, Rect &trackBox)
{
Mat gray;
cvtColor(frame, gray, CV_RGB2GRAY); Rect searchWindow;
searchWindow.width = trackBox.width * 3;
searchWindow.height = trackBox.height * 3;
searchWindow.x = trackBox.x + trackBox.width * 0.5 - searchWindow.width * 0.5;
searchWindow.y = trackBox.y + trackBox.height * 0.5 - searchWindow.height * 0.5;
searchWindow &= Rect(0, 0, frame.cols, frame.rows); Mat similarity;
matchTemplate(gray(searchWindow), model, similarity, CV_TM_CCOEFF_NORMED); double mag_r;
Point point;
minMaxLoc(similarity, 0, &mag_r, 0, &point);
trackBox.x = point.x + searchWindow.x;
trackBox.y = point.y + searchWindow.y;
model = gray(trackBox);
} int main(int argc, char * argv[])
{
VideoCapture capture;
capture.open("david.mpg");
bool fromfile = true;
//Init camera
if (!capture.isOpened())
{
cout << "capture device failed to open!" << endl;
return -1;
}
//Register mouse callback to draw the bounding box
cvNamedWindow("Tracker", CV_WINDOW_AUTOSIZE);
cvSetMouseCallback("Tracker", mouseHandler, NULL ); Mat frame, model;
capture >> frame;
while(!gotBB)
{
if (!fromfile)
capture >> frame; imshow("Tracker", frame);
if (cvWaitKey(20) == 'q')
return 1;
}
//Remove callback
cvSetMouseCallback("Tracker", NULL, NULL ); Mat gray;
cvtColor(frame, gray, CV_RGB2GRAY);
model = gray(box); int frameCount = 0; while (1)
{
capture >> frame;
if (frame.empty())
return -1;
double t = (double)cvGetTickCount();
frameCount++; // tracking
tracking(frame, model, box); // show
stringstream buf;
buf << frameCount;
string num = buf.str();
putText(frame, num, Point(20, 20), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 3);
rectangle(frame, box, Scalar(0, 0, 255), 3);
imshow("Tracker", frame); t = (double)cvGetTickCount() - t;
cout << "cost time: " << t / ((double)cvGetTickFrequency()*1000.) << endl; if ( cvWaitKey(1) == 27 )
break;
} return 0;
}

  

基于模板匹配的目标跟踪(OpenCV)的更多相关文章

  1. 开源项目(9-0)综述--基于深度学习的目标跟踪sort与deep-sort

    基于深度学习的目标跟踪sort与deep-sort https://github.com/Ewenwan/MVision/tree/master/3D_Object_Detection/Object_ ...

  2. opencv如何用模板匹配寻找目标

    首先使用: MatchTemplate 比较模板和重叠的图像区域 void cvMatchTemplate( const CvArr* image, const CvArr* templ, CvArr ...

  3. 基于 MeanShift 算法的目标跟踪问题研究

    参考:http://www.cnblogs.com/tornadomeet/archive/2012/03/15/2398769.html MeanShift 算法作为一种基于特征的跟踪方法,基本思想 ...

  4. 使用Opencv中matchTemplate模板匹配方法跟踪移动目标

    模板匹配是一种在图像中定位目标的方法,通过把输入图像在实际图像上逐像素点滑动,计算特征相似性,以此来判断当前滑块图像所在位置是目标图像的概率. 在Opencv中,模板匹配定义了6种相似性对比方式: C ...

  5. 基于MeanShift的目标跟踪算法及实现

    这次将介绍基于MeanShift的目标跟踪算法,首先谈谈简介,然后给出算法实现流程,最后实现了一个单目标跟踪的MeanShift算法[matlab/c两个版本] csdn贴公式比较烦,原谅我直接截图了 ...

  6. OpenCV——模板匹配

    minMaxLoc函数: void minMaxLoc( const Mat& src, double* minVal, double* maxVal=0, Point* minLoc=0, ...

  7. Video Target Tracking Based on Online Learning—深度学习在目标跟踪中的应用

    摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们 ...

  8. 【目标跟踪】相关滤波算法之MOSSE

    简要 2010年David S. Bolme等人在CVPR上发表了<Visual Object Tracking using Adaptive Correlation Filters>一文 ...

  9. 时序分析:DTW算法(基于模板)

    对时序对象进行分析,使用KMP算法可以分析速率不变的模式,参考时序分析:欧式空间轨迹模式识别.使用基于模板匹配的方法,对于速率发生变化的模式,需要用新的对速率要求松散的方法,DTW方法为一种广泛使用的 ...

随机推荐

  1. 原生JS实现拖动滑块验证登录效果

    ♀分享一组利用原生JS实现拖动滑块验证效果 ♀在这个组代码中涉及三个方面的知识: ⑴事件处理 ⑵添加验证标记 ⑶选择器的封装   代码如下: <!DOCTYPE html> <htm ...

  2. 享元模式(Flyweight)---结构型

    1 基础知识 定义:提供了减少对象数量从而改善应用所需的对象结构的方式.特征:运用共享技术有效支持大量细粒度的对象. 本质:分离与共享. 使用场景: (1)如果一个应用程序使用了大量的细粒度对象,可以 ...

  3. 求二叉树的层次遍历(SDUT 2824)

    Problem Description 已知一颗二叉树的前序遍历和中序遍历,求二叉树的层次遍历. Input 输入数据有多组,输入T,代表有T组测试数据.每组数据有两个长度小于50的字符串,第一个字符 ...

  4. trie树(字典树)的部分简单实现

    什么是trie树(字典树)? trie树是一种用于快速检索的多叉树结构.和二叉查找树不同,在trie树中,每个结点上并非存储一个元素. trie树把要查找的关键词看作一个字符序列.并根据构成关键词字符 ...

  5. synchronized的对象锁和类锁

    概念 synchronized 是 Java 中的关键字,是利用锁的机制来实现同步的. 锁机制有如下两种特性: 互斥性:即在同一时间只允许一个线程持有某个对象锁,通过这种特性来实现多线程中的协调机制, ...

  6. Java线程之join

    简述 Thread类的join方法用来使main线程进入阻塞状态,进而等待调用join方法的线程执行,join有三个重载方法: public final void join() 使主线程进入阻塞状态, ...

  7. main.js中import引入css与引入js的区别

    表现:引入css样式文件能够作用到全局,而引入js文件就只能在main.js中产生作用 在 main.js 中引入的 css 都是全局生效的.引入的 js 文件只在 main.js 中生效,是因为 m ...

  8. ACM之路(18)—— 矩阵

    矩阵是干什么的呢?一句话来说就是,知道相邻两个函数的递推关系和第一个数,让你递推到第n个数.显然,如果n很大,那么一个一个递推过去是会超时的.所以矩阵就是用来解决这种快速递推的问题的. 比方说斐波那契 ...

  9. Python locust性能测试框架模板

    locust框架模板 from locust import HttpLocust, TaskSet, task import Queue class UserBehavior(TaskSet): de ...

  10. ora-01578

    SQL> exec DBMS_STATS.GATHER_DATABASE_STATS; BEGIN DBMS_STATS.GATHER_DATABASE_STATS; END; * ERROR ...