1,pandas操作主要有对指定位置的赋值,如上一篇中的数据选择一样,根据loc,iloc,ix选择指定位置,直接赋值

2,插入,insert方法,插入行和列

3,添加

4,删除 drop方法

5,弹出 pop方法

In [1]:

import pandas as pd
import numpy as np

In [53]:

dates = np.arange(20190809,20190815)
df1 = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=["A","B","C","D"])
df1

Out[53]:

A B C D
20190809 0 1 2 3
20190810 4 5 6 7
20190811 8 9 10 11
20190812 12 13 14 15
20190813 16 17 18 19
20190814 20 21 22 23

In [20]:

df1.iloc[2,2]

Out[20]:

10

In [44]:

df1.iloc[2,2] = 100
df1

Out[44]:

A B C D
20190809 0 1 2 3
20190810 4 5 6 7
20190811 8 9 100 11
20190812 12 13 14 15
20190813 16 17 18 19
20190814 20 21 22 23

In [40]:

df1.loc[20190810,"B"]=200
df1

Out[40]:

A B C D
20190809 0 1 2 3
20190810 4 200 6 7
20190811 8 9 10 11
20190812 12 13 14 15
20190813 16 17 18 19
20190814 20 21 22 23

In [54]:

df1[df1.A>10]=0
df1

Out[54]:

A B C D
20190809 0 1 2 3
20190810 4 5 6 7
20190811 8 9 10 11
20190812 0 0 0 0
20190813 0 0 0 0
20190814 0 0 0 0

In [55]:

df1.A[df1.A==0]=100
df1

Out[55]:

A B C D
20190809 100 1 2 3
20190810 4 5 6 7
20190811 8 9 10 11
20190812 100 0 0 0
20190813 100 0 0 0
20190814 100 0 0 0

In [56]:

#插入一列
df1["E"]=10
df1

Out[56]:

A B C D E
20190809 100 1 2 3 10
20190810 4 5 6 7 10
20190811 8 9 10 11 10
20190812 100 0 0 0 10
20190813 100 0 0 0 10
20190814 100 0 0 0 10

In [59]:

df1["F"]=pd.Series([1,2,3,4,5,6],index=dates)
df1

Out[59]:

A B C D E F
20190809 100 1 2 3 10 1
20190810 4 5 6 7 10 2
20190811 8 9 10 11 10 3
20190812 100 0 0 0 10 4
20190813 100 0 0 0 10 5
20190814 100 0 0 0 10 6

In [62]:

#添加一行
df1.loc[20190815,["A","B","C"]]=[5,6,8]
df1

Out[62]:

A B C D E F
20190809 100.0 1.0 2.0 3.0 10.0 1.0
20190810 4.0 5.0 6.0 7.0 10.0 2.0
20190811 8.0 9.0 10.0 11.0 10.0 3.0
20190812 100.0 0.0 0.0 0.0 10.0 4.0
20190813 100.0 0.0 0.0 0.0 10.0 5.0
20190814 100.0 0.0 0.0 0.0 10.0 6.0
20190815 5.0 6.0 8.0 NaN NaN NaN

In [65]:

s1=pd.Series([1,2,3,4,5,6],index=["A","B","C","D","E","F"])
s1.name="S1"
df2 = df1.append(s1)
df2

Out[65]:

A B C D E F
20190809 100.0 1.0 2.0 3.0 10.0 1.0
20190810 4.0 5.0 6.0 7.0 10.0 2.0
20190811 8.0 9.0 10.0 11.0 10.0 3.0
20190812 100.0 0.0 0.0 0.0 10.0 4.0
20190813 100.0 0.0 0.0 0.0 10.0 5.0
20190814 100.0 0.0 0.0 0.0 10.0 6.0
20190815 5.0 6.0 8.0 NaN NaN NaN
S1 1.0 2.0 3.0 4.0 5.0 6.0

In [67]:

#插入一列
df1.insert(1,"G",df2["E"])
df1

Out[67]:

A G B C D E F
20190809 100.0 10.0 1.0 2.0 3.0 10.0 1.0
20190810 4.0 10.0 5.0 6.0 7.0 10.0 2.0
20190811 8.0 10.0 9.0 10.0 11.0 10.0 3.0
20190812 100.0 10.0 0.0 0.0 0.0 10.0 4.0
20190813 100.0 10.0 0.0 0.0 0.0 10.0 5.0
20190814 100.0 10.0 0.0 0.0 0.0 10.0 6.0
20190815 5.0 NaN 6.0 8.0 NaN NaN NaN

In [68]:

g=df1.pop("G")
df1.insert(6,"G",g)
df1

Out[68]:

A B C D E F G
20190809 100.0 1.0 2.0 3.0 10.0 1.0 10.0
20190810 4.0 5.0 6.0 7.0 10.0 2.0 10.0
20190811 8.0 9.0 10.0 11.0 10.0 3.0 10.0
20190812 100.0 0.0 0.0 0.0 10.0 4.0 10.0
20190813 100.0 0.0 0.0 0.0 10.0 5.0 10.0
20190814 100.0 0.0 0.0 0.0 10.0 6.0 10.0
20190815 5.0 6.0 8.0 NaN NaN NaN NaN

In [69]:

#删除列
del df1["G"]
df1

Out[69]:

A B C D E F
20190809 100.0 1.0 2.0 3.0 10.0 1.0
20190810 4.0 5.0 6.0 7.0 10.0 2.0
20190811 8.0 9.0 10.0 11.0 10.0 3.0
20190812 100.0 0.0 0.0 0.0 10.0 4.0
20190813 100.0 0.0 0.0 0.0 10.0 5.0
20190814 100.0 0.0 0.0 0.0 10.0 6.0
20190815 5.0 6.0 8.0 NaN NaN NaN

In [70]:

df2 = df1.drop(["A","B"],axis=1)
df1

Out[70]:

A B C D E F
20190809 100.0 1.0 2.0 3.0 10.0 1.0
20190810 4.0 5.0 6.0 7.0 10.0 2.0
20190811 8.0 9.0 10.0 11.0 10.0 3.0
20190812 100.0 0.0 0.0 0.0 10.0 4.0
20190813 100.0 0.0 0.0 0.0 10.0 5.0
20190814 100.0 0.0 0.0 0.0 10.0 6.0
20190815 5.0 6.0 8.0 NaN NaN NaN

In [71]:

df2

Out[71]:

C D E F
20190809 2.0 3.0 10.0 1.0
20190810 6.0 7.0 10.0 2.0
20190811 10.0 11.0 10.0 3.0
20190812 0.0 0.0 10.0 4.0
20190813 0.0 0.0 10.0 5.0
20190814 0.0 0.0 10.0 6.0
20190815 8.0 NaN NaN NaN

In [73]:

#删除行
df2=df1.drop([20190810,20190812],axis=0)
df1

Out[73]:

A B C D E F
20190809 100.0 1.0 2.0 3.0 10.0 1.0
20190810 4.0 5.0 6.0 7.0 10.0 2.0
20190811 8.0 9.0 10.0 11.0 10.0 3.0
20190812 100.0 0.0 0.0 0.0 10.0 4.0
20190813 100.0 0.0 0.0 0.0 10.0 5.0
20190814 100.0 0.0 0.0 0.0 10.0 6.0
20190815 5.0 6.0 8.0 NaN NaN NaN

In [74]:

df2

Out[74]:

A B C D E F
20190809 100.0 1.0 2.0 3.0 10.0 1.0
20190811 8.0 9.0 10.0 11.0 10.0 3.0
20190813 100.0 0.0 0.0 0.0 10.0 5.0
20190814 100.0 0.0 0.0 0.0 10.0 6.0
20190815 5.0 6.0 8.0 NaN NaN NaN

pandas-赋值操作的更多相关文章

  1. 数据分析06 /pandas高级操作相关案例:人口案例分析、2012美国大选献金项目数据分析

    数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 目录 数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 1. ...

  2. Pandas 常见操作详解

    Pandas 常见操作详解 很多人有误解,总以为Pandas跟熊猫有点关系,跟gui叔创建Python一样觉得Pandas是某某奇葩程序员喜欢熊猫就以此命名,简单介绍一下,Pandas的命名来自于面板 ...

  3. 深入理解Javascript--作用域和赋值操作

    作用域作为一个最基础的功能存在于各种编程语言中,它使得我们的编程更加灵活有趣.其基础功能就是存储变量中的值,然后可以对值进行访问和修改. 可能我们都知道作用域的一些概念,以及其一些扩展的一些内容闭包等 ...

  4. jquery select取值,赋值操作

    select">jquery select取值,赋值操作 一.获取Select 获取select 选中的 text : $("#ddlRegType").find( ...

  5. JavaScript对象属性赋值操作的逻辑

    对象进行属性赋值操作时,其执行逻辑如下所示: 1. 当前对象中是否有该属性?有,进行赋值操作:没有,进行下一步判断. 2. 对象的原型链中是否有该属性?没有,在当前对象上创建该属性,并赋值:有,进行下 ...

  6. Javascript对象赋值操作

    首先,我们还是举个例子来说明对象赋值操作的问题吧: ps: 本文默认约定log = console.log function A(){} A.prototype.x = 10; var a1 = ne ...

  7. 千万不要在JS中使用连等赋值操作

    前言 文章标题这句话原本是在国外某JavaScript规范里看到的,当时并没有引起足够的重视,直到最近一次出现了bug发现JS里的连等赋值操作的特色(坑). 网上搜索一番发现一个非常好的连等赋值的(来 ...

  8. Angularjs总结(五)指令运用及常用控件的赋值操作

    1.常用指令 <div ng-controller="jsyd-controller"> <div style="float:left;width:10 ...

  9. C风格字符串和C++ string 对象赋值操作的性能比较

    <<C++ Primer>> 第四版 Exercise Section 4.3.1 部分Exercise 4.2.9 习题如下: 在自己本机执行如下程序,记录程序执行时间: # ...

  10. 【转】千万不要在JS中使用连等赋值操作

    原文链接 千万不要在JS中使用连等赋值操作   目录 前言 赋值顺序? 连续赋值能拆开写么? 后记 前言 文章标题这句话原本是在国外某JavaScript规范里看到的,当时并没有引起足够的重视,直到最 ...

随机推荐

  1. D-Link系列路由器漏洞挖掘入门

    D-Link系列路由器漏洞挖掘入门 前言 前几天去上海参加了geekpwn,看着大神们一个个破解成功各种硬件,我只能在下面喊 6666,特别羡慕那些大神们.所以回来就决定好好研究一下路由器,争取跟上大 ...

  2. FASTCGI/CGI

    在了解这两个协议之前,我们先谈一下动态网页 动态网页 是指跟静态网页相对的一种网页编程技术.静态网页,随着html代码的生成,页面的内容和显示效果就基本上不会发生变化了--除非你修改页面代码.而动态网 ...

  3. S19格式

    S-record格式文件是Freescale CodeWarrior编译器生成的后缀名为.S19的程序文件,是一段直接烧写进MCU的ASCII码,英文全称问Motorola format for EE ...

  4. ELK对nginx日志进行流量监控

    ELK对nginx日志进行流量监控 一.前言 线上有一套ELK单机版,版本为5.2.1.现在想把nginx访问日志接入到elk里,进行各个域名使用流量带宽的统计分析.要把nginx日志传输到elk上, ...

  5. 2.Nginx基本配置

    1. Nginx相关概念 代理服务器一般分为正向代理(通常直接称为代理服务器)和反向代理. 通常的代理服务器,只用于代理内部网络对Internet的连接请求,客户机必须指定代理服务器,并将本来要直接发 ...

  6. java合并数组的几种方法,stream流合并数组

    一.实例代码 package cc.ash; import org.apache.commons.lang3.ArrayUtils; import java.lang.reflect.Array; i ...

  7. mongodb cursor用法

    为了营造大批量数据,我们可以这样写javascript脚本 for (var i=1;i<=10000;i++) { if(i%2==1) { db.cursortest.insert({_id ...

  8. MySQL错误:ERROR 1067 (42000): Invalid default value for 'timestamp_field'

    数据库报错   ERROR 1067 (42000): Invalid default value for 'start_time' 是因为数据库的配置有问题: 可以看到  NO_ZERO_IN_DA ...

  9. java上传大文件解决方案

    需求:项目要支持大文件上传功能,经过讨论,初步将文件上传大小控制在10G内,因此自己需要在项目中进行文件上传部分的调整和配置,自己将大小都以10G来进行限制. 第一步: 前端修改 由于项目使用的是BJ ...

  10. 2018 南京预选赛 J Sum ( 欧拉素数筛 、Square-free Number、DP )

    题目链接 题意 : 定义不能被平方数整除的数为 Square-free Number 定义 F(i) = 有几对不同的 a 和 b 使得 i = a * b 且 a .b 都是 Square-free ...