CF516D Drazil and Morning Exercise
首先每个点到最远点的距离可以预处理出来,这个距离显然是这个点到树直径两端点的最大值.把那个距离记为\(d_i\),然后从小到大枚举\(d_i\),并强制它为最大的\(d_i\),那么前面\(d_j\)更小的,满足\(d_i-d_j\le L\)的点都可以被计入答案,那么就可以维护一些点的连通情况,支持加点删点,以及维护每个连通块大小,lct即可
考虑发掘其他性质,因为一个点的最远点一定是直径两端点之一,那么把直径上中点作为根,在直径一半边的所有点的最远点都是另一侧的直径端点,并且越往子树走,这个距离会越大.所以如果从大到小枚举最小的\(d_i\),那么当一个满足\(d_j-d_i>L\)的点\(j\)被删掉时,在它子树内的点会被先删掉,所以删它的时候他就是个叶子.那么考虑直接并查集维护,删点是直接给对应并查集大小\(-1\)即可
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=1e5+10;
LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int to[N<<1],nt[N<<1],w[N<<1],hd[N],tot=1;
void add(int x,int y,int z)
{
++tot,to[tot]=y,nt[tot]=hd[x],w[tot]=z,hd[x]=tot;
++tot,to[tot]=x,nt[tot]=hd[y],w[tot]=z,hd[y]=tot;
}
int n,ff[N],sz[N],rt,sq[N];
int findf(int x){return ff[x]==x?x:ff[x]=findf(ff[x]);}
LL ds[N],mx;
bool cmp(int aa,int bb){return ds[aa]>ds[bb];}
void dfs(int x,int ffa,LL de)
{
ds[x]=max(ds[x],de);
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y==ffa) continue;
dfs(y,x,de+w[i]);
}
if(mx<de) mx=de,rt=x;
}
int main()
{
////////QWQWQ
n=rd();
for(int i=1;i<n;++i)
{
int x=rd(),y=rd(),z=rd();
add(x,y,z);
}
mx=0,dfs(1,0,0);
int r2=rt;
mx=0,dfs(r2,0,0);
dfs(rt,0,0);
for(int i=1;i<=n;++i) sq[i]=i;
sort(sq+1,sq+n+1,cmp);
int q=rd();
while(q--)
{
LL lm=rd();
for(int i=1;i<=n;++i) ff[i]=i,sz[i]=1;
int ans=0;
for(int i=1,j=1;i<=n;++i)
{
int x=sq[i];
while(ds[sq[j]]-ds[x]>lm)
--sz[findf(sq[j])],++j;
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(ds[y]>=ds[x]&&findf(y)!=findf(x))
sz[findf(x)]+=sz[findf(y)],ff[findf(y)]=findf(x);
}
ans=max(ans,sz[findf(x)]);
}
printf("%d\n",ans);
}
return 0;
}
CF516D Drazil and Morning Exercise的更多相关文章
- CF516D Drazil and Morning Exercise【并查集,结论】
题目描述:一棵\(n\)个点的树,设\(d(u)=\max_{v\in V}\text{dis}(u,v)\),每次询问一个数\(l\),求一个最大的联通子图\(L\),使得\(\forall u,v ...
- 「CF516D」 Drazil and Morning Exercise
「CF516D」 Drazil and Morning Exercise 传送门 这个 \(f_i\) 显然可以通过树形 \(\texttt{DP}\) 直接求. 然后看到这种差值问题感觉就可以二分转 ...
- 【CF516D】Drazil and Morning Exercise
题目 首先我们知道,在树上距离一个点最远的点一定是直径的两个端点之一 首先两遍\(\rm dfs\)把直径求出来,定义\(d(u)\)表示点\(u\)距离其最远点的距离,有了直径我们就能求出\(d\) ...
- 【Cf #292 D】Drazil and Morning Exercise(树的直径,树上差分)
有一个经典的问题存在于这个子问题里,就是求出每个点到其他点的最远距离. 这个问题和树的直径有很大的关系,因为事实上距离每个点最远的点一定是直径的两个端点.所以我们可以很容易地进行$3$遍$Dfs$就可 ...
- 516D Drazil and Morning Exercise
分析 求出直径和最远距离d 之后我们以直径中点为根 发现父亲的d肯定不小于儿子的d 于是从下往上启发式合并维护与子树根的值相差L内的个数即可 代码 #include<bits/stdc++.h& ...
- Codeforces 516D - Drazil and Morning Exercise(树的直径+并查集)
Codeforces 题目传送门 & 洛谷题目传送门 这是一道 jxd 的作业题,感觉难度不是特别大(虽然我并没有自己独立 AC,不过也可能是省选结束了我的脑子也没了罢(((,就随便写写罢 u ...
- IOI2020 国家集训队作业 泛做
题号 题目名称 rating 算法 完成情况 CF504E Misha and LCP on Tree CF505E Mr.Kitayuta vs. Bamboos CF506E Mr.Kitayut ...
- MIT 6.828 JOS学习笔记12 Exercise 1.9
Lab 1中Exercise 9的解答报告 Exercise 1.9: 判断一下操作系统内核是从哪条指令开始初始化它的堆栈空间的,以及这个堆栈坐落在内存的哪个地方?内核是如何给它的堆栈保留一块内存空间 ...
- MIT 6.828 JOS学习笔记13 Exercise 1.10
Lab 1 Exercise 10 为了能够更好的了解在x86上的C程序调用过程的细节,我们首先找到在obj/kern/kern.asm中test_backtrace子程序的地址, 设置断点,并且探讨 ...
随机推荐
- 2965 -- The Pilots Brothers' refrigerator
The Pilots Brothers' refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 27893 ...
- Springboot整合 mybatis-generator
1.pom.xml文件中 生成依赖 <plugin> <groupId>org.mybatis.generator</groupId> <artifactId ...
- Spring事务注解分析
1.使用spring事务注解 2.手写事务注解 1).sql执行器 2).事务注解定义 3).AOP实现事务具体实现(同一个线程中使用同一个连接) 4).应用使用注解前 5).应用使用注解后
- CentOS7 源码安装 PostgreSQL 12
PostgreSQL 12 源码安装 Table of Contents 1. 下载 2. 准备环境 3. 编译安装 4. 设置环境变量 5. 初始化数据库 6. 配置参数文件 6.1. postgr ...
- Python - 排序( 插入, 冒泡, 快速, 二分 )
插入排序 算法分析 两次循环, 大循环对队列中的每一个元素拿出来作为小循环的裁定对象 小循环对堆当前循环对象在有序队列中寻找插入的位置 性能参数 空间复杂度 O(1) 时间复杂度 O(n^2) 详细代 ...
- c99数组稀疏初始化
#include <stdio.h> #include <stdlib.h> int main() { ] = {[]=,,[] =}; ; i < ; i++) { p ...
- 【POJ - 3262】Protecting the Flowers(贪心)
Protecting the Flowers 直接中文 Descriptions FJ去砍树,然后和平时一样留了 N (2 ≤ N ≤ 100,000)头牛吃草.当他回来的时候,他发现奶牛们正在津津有 ...
- 【052-week 预习周】学习总结
目录 学习手册 学习理念 学员精选 课前准备 概览 数据结构思维导图 算法思维导图 学习手册 学习理念 让优秀的人一起学习 师傅领进门,修行靠个人 学员精选 稻盛和夫"六项精进" ...
- 函数节流之debounce
浏览器中某些计算和处理要比其他的昂贵很多.例如, DOM 操作比起非 DOM 交互需要更多的内存和 CPU 时间.连续尝试进行过多的 DOM 相关操作可能会导致浏览器挂起,有时候甚至会崩溃.尤其在 I ...
- 《ThinkPHP 5.0快速入门》 请求和响应
1.请求对象 //传统调用$request = Request::instance();//实例化对象 $request->url();//获取当前的域名 //继承think\Controlle ...