机器学习笔记——k-近邻算法(一)简单代码
一
import numpy as np
##初始化数据
T = [[3, 104, -1],
[2, 100, -1],
[1, 81, -1],
[101, 10, 1],
[99, 5, 1],
[98, 2, 1]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.sign(sum([i[-1] for i in dis[:K]])) 二
#带权投票
import numpy as np ##初始化数据
T = [[3, 104, -1],
[2, 100, -1],
[1, 81, -1],
[101, 10, 1],
[99, 5, 1],
[98, 2, 1]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.sign(sum([i[-1]/i[0] for i in dis[:K]])) 三
import numpy as np ##初始化数据
T = [[3, 104, 98],
[2, 100, 93],
[1, 81, 95],
[101, 10, 16],
[99, 5, 8],
[98, 2, 7]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.mean([i[-1] for i in dis[:K]]) 四
#带权回归
import numpy as np ##初始化数据
T = [[3, 104, 98],
[2, 100, 93],
[1, 81, 95],
[101, 10, 16],
[99, 5, 8],
[98, 2, 7]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
fenzi = sum([i[-1]/i[0] for i in dis[:K]])
fenmu = sum([1/i[0] for i in dis[:K]])
fenzi/fenmu
机器学习笔记——k-近邻算法(一)简单代码的更多相关文章
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
- 【机器学习】k近邻算法(kNN)
一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Le ...
- 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)
No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...
- R语言学习笔记—K近邻算法
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适 ...
- 机器学习之K近邻算法
K 近邻 (K-nearest neighbor, KNN) 算法直接作用于带标记的样本,属于有监督的算法.它的核心思想基本上就是 近朱者赤,近墨者黑. 它与其他分类算法最大的不同是,它是一种&quo ...
- 机器学习2—K近邻算法学习笔记
Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...
- 《机器学习实战》读书笔记—k近邻算法c语言实现(win下)
#include <stdio.h> #include <io.h> #include <math.h> #include <stdlib.h> #de ...
- 机器学习实战-k近邻算法
写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用 ...
- 【机器学习】K近邻算法——多分类问题
给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类. KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如 ...
随机推荐
- 牛客算法:DNA序列
import java.util.*; public class Main{ public static void main(String[] args){ try(Scanner in = new ...
- 「NOI2015」荷马史诗 (k叉huffman树/k叉合并果子)
是个多叉huffman树,思想类比合并果子. 具体见 CrazyDave 的博客 CODE #include <bits/stdc++.h> using namespace std; ty ...
- 边学边体验django--表格
在模板的末尾,我们增加一个rlt记号,为表格处理结果预留位置. 表格后面还有一个{% csrf_token %}的标签.csrf全称是Cross Site Request Forgery.这是Djan ...
- luogu 3998 [SHOI2013]发微博 map
考试的时候被卡常了~ code: #include <bits/stdc++.h> #define ll long long #define N 200002 #define setIO( ...
- idea快捷方式1
Ctrl+Alt+O 优化导入的类和包 Alt+Insert 生成代码(如get,set方法,构造函数等) 或者右键(Generate) fori/sout/psvm + Tab Ctrl+Alt ...
- 数据结构实验之二叉树四:(先序中序)还原二叉树 (SDUT 3343)
#include <bits/stdc++.h> using namespace std; struct node { char data; struct node *lc, *rc; } ...
- windows游戏编程 创建WIN32一个HelloWOrld程序
本系列文章由jadeshu编写,转载请注明出处.http://blog.csdn.net/jadeshu/article/details/22449085 作者:jadeshu 邮箱: jades ...
- Spark(二)CentOS7.5之Spark2.3.1HA安装
一 下载安装包 1 官方下载 官方下载地址:http://spark.apache.org/downloads.html 2 安装前提 Java8 安装成功 zookeeper 安装成功 had ...
- iOS开发 Error: CGImageProviderCreate: invalid image provider size
一般可拉伸的图片(俗称点9图片)会放到images.xcassets目录里,然后对图片进行Slicing,但是当对一张图片进行slicing的left和right都是0的话,在iOS7.0上运行会出现 ...
- 异步机制 - Overlapped
1 前面说到 GetOverlappedResult的bWait含义 GetOverlappedResult的bWait含义表示是否需要等待,如果IO还处于PENDING状态,内部大概实现是这样 hO ...