import numpy as np
##初始化数据
T = [[3, 104, -1],
[2, 100, -1],
[1, 81, -1],
[101, 10, 1],
[99, 5, 1],
[98, 2, 1]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.sign(sum([i[-1] for i in dis[:K]])) 二
#带权投票
import numpy as np ##初始化数据
T = [[3, 104, -1],
[2, 100, -1],
[1, 81, -1],
[101, 10, 1],
[99, 5, 1],
[98, 2, 1]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.sign(sum([i[-1]/i[0] for i in dis[:K]])) 三
import numpy as np ##初始化数据
T = [[3, 104, 98],
[2, 100, 93],
[1, 81, 95],
[101, 10, 16],
[99, 5, 8],
[98, 2, 7]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.mean([i[-1] for i in dis[:K]]) 四
#带权回归
import numpy as np ##初始化数据
T = [[3, 104, 98],
[2, 100, 93],
[1, 81, 95],
[101, 10, 16],
[99, 5, 8],
[98, 2, 7]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
fenzi = sum([i[-1]/i[0] for i in dis[:K]])
fenmu = sum([1/i[0] for i in dis[:K]])
fenzi/fenmu

机器学习笔记——k-近邻算法(一)简单代码的更多相关文章

  1. 机器学习之K近邻算法(KNN)

    机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...

  2. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

  3. 【机器学习】k近邻算法(kNN)

    一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Le ...

  4. 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)

    No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...

  5. R语言学习笔记—K近邻算法

    K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适 ...

  6. 机器学习之K近邻算法

    K 近邻 (K-nearest neighbor, KNN) 算法直接作用于带标记的样本,属于有监督的算法.它的核心思想基本上就是 近朱者赤,近墨者黑. 它与其他分类算法最大的不同是,它是一种&quo ...

  7. 机器学习2—K近邻算法学习笔记

    Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...

  8. 《机器学习实战》读书笔记—k近邻算法c语言实现(win下)

    #include <stdio.h> #include <io.h> #include <math.h> #include <stdlib.h> #de ...

  9. 机器学习实战-k近邻算法

    写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用 ...

  10. 【机器学习】K近邻算法——多分类问题

    给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类. KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如 ...

随机推荐

  1. 我为什么要立刻放弃 React 而使用 Vue?

    作者有过多种框架,以亲身经历告诉我们vue的优势在哪里! 我为什么要立刻放弃 React 而使用 Vue?   18-07-2919:28 现在,Vue.js 在 Github 上得到的星星数已经超过 ...

  2. 一篇文章教你如何部署.NET Core WPF应用,你还在等什么?

    DevExpress广泛应用于ECM企业内容管理. 成本管控.进程监督.生产调度,在企业/政务信息化管理中占据一席重要之地.通过DevExpress WPF Controls,您能创建有着强大互动功能 ...

  3. tp5.1下redis配置和使用

    //1.config目录下新建redis.php <?php /** * Created by PhpStorm. * User: Administrator * Date: 2019/12/1 ...

  4. 表单文本字段预期描述(placeholder="请输入产品名称"以及prompt:'输入价格')

    普通html文本标签设置: <input id="xxx" placeholder="请输入产品名称"/> 带有jQueryEasyUI插件的htm ...

  5. 13、生命周期-InitializingBean和DisposableBean

    13.生命周期-InitializingBean和DisposableBean InitializingBean接口 package org.springframework.beans.factory ...

  6. VSCode:使用GIT

    准备:安装GIT.安装VSCode.GitHub上添加 1.初始化 新建本地文件xmai # 全局配置加上命令--global ,如果只想在本文件夹则去掉此参数即可: > git init &g ...

  7. com.atomikos.datasource.ResourceException: XA resource 'masterDB': resume for XID异常

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u014172271/article/det ...

  8. 分布式锁的三种实现方式 数据库、redis、zookeeper

    版权声明: https://blog.csdn.net/wuzhiwei549/article/details/80692278 一.为什么要使用分布式锁 我们在开发应用的时候,如果需要对某一个共享变 ...

  9. Python—“helloworld”

    接触一门计算机新语言,第一件事就是要准备好一个编译器用来打代码. 网上很多环境搭建的方法,具体参照https://www.runoob.com/python/python-install.html 由 ...

  10. Redis 的几种常见使用方式

    常见使用方式 Redis 的几种常见使用方式包括: Redis 单副本 Redis 多副本(主从) Redis Sentinel(哨兵) Redis Cluster Redis 自研 各种使用方式的优 ...