Warp

逻辑上,所有thread是并行的,但是,从硬件的角度来说,实际上并不是所有的thread能够在同一时刻执行,接下来我们将解释有关warp的一些本质。

Warps and Thread Blocks

warp是SM的基本执行单元。一个warp包含32个并行thread,这32个thread执行于SMIT模式。也就是说所有thread执行同一条指令,并且每个thread会使用各自的data执行该指令。

block可以是一维二维或者三维的,但是,从硬件角度看,所有的thread都被组织成一维,每个thread都有个唯一的ID(ID的计算可以在之前的博文查看)。

每个block的warp数量可以由下面的公式计算获得:

一个warp中的线程必然在同一个block中,如果block所含线程数目不是warp大小的整数倍,那么多出的那些thread所在的warp中,会剩余一些inactive的thread,也就是说,即使凑不够warp整数倍的thread,硬件也会为warp凑足,只不过那些thread是inactive状态,需要注意的是,即使这部分thread是inactive的,也会消耗SM资源。

Warp Divergence

控制流语句普遍存在于各种编程语言中,GPU支持传统的,C-style,显式控制流结构,例如if…else,for,while等等。

CPU有复杂的硬件设计可以很好的做分支预测,即预测应用程序会走哪个path。如果预测正确,那么CPU只会有很小的消耗。和CPU对比来说,GPU就没那么复杂的分支预测了(CPU和GPU这方面的差异的原因不是我们关心的,了解就好,我们关心的是由这差异引起的问题)。

这样我们的问题就来了,因为所有同一个warp中的thread必须执行相同的指令,那么如果这些线程在遇到控制流语句时,如果进入不同的分支,那么同一时刻除了正在执行的分之外,其余分支都被阻塞了,十分影响性能。这类问题就是warp divergence。

请注意,warp divergence问题只会发生在同一个warp中。

下图展示了warp divergence问题:

为了获得最好的性能,就需要避免同一个warp存在不同的执行路径。避免该问题的方法很多,比如这样一个情形,假设有两个分支,分支的决定条件是thread的唯一ID的奇偶性:

__global__ void mathKernel1(float *c) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
float a, b;
a = b = 0.0f;
if (tid % 2 == 0) {
a = 100.0f;
} else {
b = 200.0f;
}
c[tid] = a + b;
}

一种方法是,将条件改为以warp大小为步调,然后取奇偶,如下:

__global__ void mathKernel2(void) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
float a, b;
a = b = 0.0f;
if ((tid / warpSize) % 2 == 0) {
a = 100.0f;
} else {
b = 200.0f;
}
c[tid] = a + b;
}

代码:

int main(int argc, char **argv) {
// set up device
int dev = 0;
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
printf("%s using Device %d: %s\n", argv[0],dev, deviceProp.name);
// set up data size
int size = 64;
int blocksize = 64;
if(argc > 1) blocksize = atoi(argv[1]);
if(argc > 2) size = atoi(argv[2]);
printf("Data size %d ", size);
// set up execution configuration
dim3 block (blocksize,1);
dim3 grid ((size+block.x-1)/block.x,1);
printf("Execution Configure (block %d grid %d)\n",block.x, grid.x);
// allocate gpu memory
float *d_C;
size_t nBytes = size * sizeof(float);
cudaMalloc((float**)&d_C, nBytes);
// run a warmup kernel to remove overhead
size_t iStart,iElaps;
cudaDeviceSynchronize();
iStart = seconds();
warmingup<<<grid, block>>> (d_C);
cudaDeviceSynchronize();
iElaps = seconds() - iStart;
printf("warmup <<< %4d %4d >>> elapsed %d sec \n",grid.x,block.x, iElaps );
// run kernel 1
iStart = seconds();
mathKernel1<<<grid, block>>>(d_C);
cudaDeviceSynchronize();
iElaps = seconds() - iStart;
printf("mathKernel1 <<< %4d %4d >>> elapsed %d sec \n",grid.x,block.x,iElaps );
// run kernel 3
iStart = seconds();
mathKernel2<<<grid, block>>>(d_C);
cudaDeviceSynchronize();
iElaps = seconds () - iStart;
printf("mathKernel2 <<< %4d %4d >>> elapsed %d sec \n",grid.x,block.x,iElaps );
// run kernel 3
iStart = seconds ();
mathKernel3<<<grid, block>>>(d_C);
cudaDeviceSynchronize();
iElaps = seconds () - iStart;
printf("mathKernel3 <<< %4d %4d >>> elapsed %d sec \n",grid.x,block.x,iElaps);
// run kernel 4
iStart = seconds ();
mathKernel4<<<grid, block>>>(d_C);
cudaDeviceSynchronize();
iElaps = seconds () - iStart;
printf("mathKernel4 <<< %4d %4d >>> elapsed %d sec \n",grid.x,block.x,iElaps);
// free gpu memory and reset divece
cudaFree(d_C);
cudaDeviceReset();
return EXIT_SUCCESS;
}

编译运行:

$ nvcc -O3 -arch=sm_20 simpleDivergence.cu -o simpleDivergence
$./simpleDivergence

输出:

$ ./simpleDivergence using Device 0: Tesla M2070
Data size 64 Execution Configuration (block 64 grid 1)
Warmingup elapsed 0.000040 sec
mathKernel1 elapsed 0.000016 sec
mathKernel2 elapsed 0.000014 sec

我们也可以直接使用nvprof(之后会详细介绍)这个工具来度量性能:

$ nvprof --metrics branch_efficiency ./simpleDivergence

输出为:

Kernel: mathKernel1(void)
1 branch_efficiency Branch Efficiency 100.00% 100.00% 100.00%
Kernel: mathKernel2(void)
1 branch_efficiency Branch Efficiency 100.00% 100.00% 100.00%

Branch Efficiency的定义如下:

到这里你应该在奇怪为什么二者表现相同呢,实际上当我们的代码很简单,可以被预测时,CUDA的编译器会自动帮助优化我们的代码。稍微提一下GPU分支预测(理解的有点晕,不过了解下就好),这里,一个被称为预测变量的东西会被设置成1或者0,所有分支都会得到执行,但是只有预测值为1时,才会得到执行。当条件状态少于某一个阈值时,编译器会将一个分支指令替换为预测指令,因此,现在回到自动优化问题,一份较长的代码就会导致warp divergence了。

可以使用下面的命令强制编译器不优化(貌似不怎么管用):

$ nvcc -g -G -arch=sm_20 simpleDivergence.cu -o simpleDivergence

Resource Partitioning

一个warp的context包括以下三部分:

  1. Program counter
  2. Register
  3. Shared memory

再次重申,在同一个执行context中切换是没有消耗的,因为在整个warp的生命期内,SM处理的每个warp的执行context都是on-chip的。

每个SM有一个32位register集合放在register file中,还有固定数量的shared memory,这些资源都被thread瓜分了,由于资源是有限的,所以,如果thread比较多,那么每个thread占用资源就叫少,thread较少,占用资源就较多,这需要根据自己的要求作出一个平衡。

资源限制了驻留在SM中blcok的数量,不同的device,register和shared memory的数量也不同,就像之前介绍的Fermi和Kepler的差别。如果没有足够的资源,kernel的启动就会失败。

当一个block或得到足够的资源时,就成为active block。block中的warp就称为active warp。active warp又可以被分为下面三类:

  1. Selected warp
  2. Stalled warp
  3. Eligible warp

SM中warp调度器每个cycle会挑选active warp送去执行,一个被选中的warp称为selected warp,没被选中,但是已经做好准备被执行的称为Eligible warp,没准备好要执行的称为Stalled warp。warp适合执行需要满足下面两个条件:

  1. 32个CUDA core有空
  2. 所有当前指令的参数都准备就绪

例如,Kepler任何时刻的active warp数目必须少于或等于64个(GPU架构篇有介绍)。selected warp数目必须小于或等于4个(因为scheduler有4个?不确定,至于4个是不是太少则不用担心,kernel启动前,会有一个warmup操作,可以使用cudaFree()来实现)。如果一个warp阻塞了,调度器会挑选一个Eligible
warp准备去执行。

CUDA编程中应该重视对计算资源的分配:这些资源限制了active warp的数量。因此,我们必须掌握硬件的一些限制,为了最大化GPU利用率,我们必须最大化active warp的数目。

Latency Hiding

指令从开始到结束消耗的clock cycle称为指令的latency。当每个cycle都有eligible warp被调度时,计算资源就会得到充分利用,基于此,我们就可以将每个指令的latency隐藏于issue其它warp的指令的过程中。

和CPU编程相比,latency hiding对GPU非常重要。CPU cores被设计成可以最小化一到两个thread的latency,但是GPU的thread数目可不是一个两个那么简单。

当涉及到指令latency时,指令可以被区分为下面两种:

  1. Arithmetic instruction
  2. Memory instruction

顾名思义,Arithmetic  instruction latency是一个算数操作的始末间隔。另一个则是指load或store的始末间隔。二者的latency大约为:

  1. 10-20 cycle for arithmetic operations
  2. 400-800 cycles for global memory accesses

下图是一个简单的执行流程,当warp0阻塞时,执行其他的warp,当warp变为eligible时从新执行。

你可能想要知道怎样评估active warps 的数量来hide latency。Little’s Law可以提供一个合理的估计:

对于Arithmetic operations来说,并行性可以表达为用来hide  Arithmetic latency的操作的数目。下表显示了Fermi和Kepler相关数据,这里是以(a + b * c)作为操作的例子。不同的算数指令,throughput(吞吐)也是不同的。

这里的throughput定义为每个SM每个cycle的操作数目。由于每个warp执行同一种指令,因此每个warp对应32个操作。所以,对于Fermi来说,每个SM需要640/32=20个warp来保持计算资源的充分利用。这也就意味着,arithmetic operations的并行性可以表达为操作的数目或者warp的数目。二者的关系也对应了两种方式来增加并行性:

  1. Instruction-level Parallelism(ILP):同一个thread中更多的独立指令
  2. Thread-level Parallelism (TLP):更多并发的eligible threads

对于Memory operations,并行性可以表达为每个cycle的byte数目。

因为memory throughput总是以GB/Sec为单位,我们需要先作相应的转化。可以通过下面的指令来查看device的memory frequency:

$ nvidia-smi -a -q -d CLOCK | fgrep -A 3 "Max Clocks" | fgrep "Memory"

以Fermi为例,其memory frequency可能是1.566GHz,Kepler的是1.6GHz。那么转化过程为:

乘上这个92可以得到上图中的74,这里的数字是针对整个device的,而不是每个SM。

有了这些数据,我们可以做一些计算了,以Fermi为例,假设每个thread的任务是将一个float(4 bytes)类型的数据从global memory移至SM用来计算,你应该需要大约18500个thread,也就是579个warp来隐藏所有的memory latency。

Fermi有16个SM,所以每个SM需要579/16=36个warp来隐藏memory latency。

Occupancy

当一个warp阻塞了,SM会执行另一个eligible warp。理想情况是,每时每刻到保证cores被占用。Occupancy就是每个SM的active warp占最大warp数目的比例:

我们可以使用的device篇提到的方法来获取warp最大数目:

cudaError_t cudaGetDeviceProperties(struct cudaDeviceProp *prop, int device);

然后用maxThreadsPerMultiProcessor来获取具体数值。

grid和block的配置准则:

  • 保证block中thrad数目是32的倍数。
  • 避免block太小:每个blcok最少128或256个thread。
  • 根据kernel需要的资源调整block。
  • 保证block的数目远大于SM的数目。
  • 多做实验来挖掘出最好的配置。

Occupancy专注于每个SM中可以并行的thread或者warp的数目。不管怎样,Occupancy不是唯一的性能指标,Occupancy达到当某个值是,再做优化就可能不在有效果了,还有许多其它的指标需要调节,我们会在之后的博文继续探讨。

Synchronize

同步是并行编程的一个普遍的问题。在CUDA的世界里,有两种方式实现同步:

  1. System-level:等待所有host和device的工作完成
  2. Block-level:等待device中block的所有thread执行到某个点

因为CUDA API和host代码是异步的,cudaDeviceSynchronize可以用来停住CUP等待CUDA中的操作完成:

cudaError_t cudaDeviceSynchronize(void);

因为block中的thread执行顺序不定,CUDA提供了一个function来同步block中的thread。

__device__ void __syncthreads(void);

当该函数被调用,block中的每个thread都会等待所有其他thread执行到某个点来实现同步。

【并行计算-CUDA开发】CUDA ---- Warp解析的更多相关文章

  1. CUDA开发 - CUDA 版本

    "CUDA runtime is insufficient with CUDA driver"CUDA 9.2: 396.xx CUDA 9.1: 387.xx CUDA 9.0: ...

  2. 【并行计算-CUDA开发】warp是调度和执行的基本单位而harf-warp为存储器操作基本单位

    1.在用vs运行cuda的一些例子时,在编译阶段会报出很多警告: warning C4819 ...... 解决这个警告的方法是打开出现warning的文件,Ctrl+A全选,然后在文件菜单:file ...

  3. 【并行计算-CUDA开发】CUDA线程、线程块、线程束、流多处理器、流处理器、网格概念的深入理解

    GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor  最 ...

  4. Windows平台CUDA开发之前的准备工作

    CUDA是NVIDIA的GPU开发工具,眼下在大规模并行计算领域有着广泛应用. windows平台上面的CUDA开发之前.最好去NVIDIA官网查看说明,然后下载对应的driver. ToolKits ...

  5. 【神经网络与深度学习】【CUDA开发】caffe-windows win32下的编译尝试

    [神经网络与深度学习][CUDA开发]caffe-windows win32下的编译尝试 标签:[神经网络与深度学习] [CUDA开发] 主要是在开发Qt的应用程序时,需要的是有一个使用的库文件也只是 ...

  6. 【ARM-Linux开发】【CUDA开发】【深度学习与神经网络】Jetson Tx2安装相关之三

    JetPack(Jetson SDK)是一个按需的一体化软件包,捆绑了NVIDIA®Jetson嵌入式平台的开发人员软件.JetPack 3.0包括对Jetson TX2 , Jetson TX1和J ...

  7. 【CUDA开发】CUDA面内存拷贝用法总结

    [CUDA开发]CUDA面内存拷贝用法总结 标签(空格分隔): [CUDA开发] 主要是在调试CUDA硬解码并用D3D9或者D3D11显示的时候遇到了一些代码,如下所示: CUdeviceptr g_ ...

  8. 【CUDA开发】CUDA编程接口(一)------一十八般武器

    子曰:工欲善其事,必先利其器.我们要把显卡作为通用并行处理器来做并行算法处理,就得知道CUDA给我提供了什么样的接口,就得了解CUDA作为通用高性能计算平台上的一十八般武器.(如果你想自己开发驱动,自 ...

  9. 【神经网络与深度学习】【CUDA开发】【VS开发】Caffe+VS2013+CUDA7.5+cuDNN配置过程说明

    [神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置过程说明 标签:[Qt开发] 说明:这个工具在Windows上的配置真的是让我纠结万分,大部分 ...

  10. 【视频开发】【CUDA开发】ffmpeg Nvidia硬件加速总结

    原文链接:https://developer.nvidia.com/ffmpeg GPU-accelerated video processing integrated into the most p ...

随机推荐

  1. kafka接口文档和kafka教程

    http://kafka.apache.org/090/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html ...

  2. App自动化-python基础

    定义类:类变量.成员变量.局部变量:构造函数.类方法:实例化对象: # -*- coding: utf-8 -*- ''' Created on 2019-6-25 @author: adminstr ...

  3. java8 time计算时间差

    最近使用Java8编写代码时,需要计算时间差,现整理如下 前言 本次使用了Java8提供的ChronoUnit工具类,它主要提供以下几种时间维度 枚举 枚举 说明 NANOS 毫微秒(毫秒的10000 ...

  4. 51 Nod 1191消灭兔子

    1191 消灭兔子 1 秒 131,072 KB 40 分 4 级题 有N只兔子,每只有一个血量B[i],需要用箭杀死免子.有M种不同类型的箭可以选择,每种箭对兔子的伤害值分别为D[i],价格为P[i ...

  5. [Vue] : vue-resource 实现 get, post, jsonp请求

    vue-resource 实现 get, post, jsonp请求 常见的数据请求类型:get,post,jsonp 除了vue-resource之外,还可以使用axios的第三方包实现实现数据的请 ...

  6. Python数据挖掘-文本挖掘

    文本挖掘概要 搞什么的? 从大量文本数据中,抽取出有价值的知识,并且利用这些知识更好的组织信息的过程. 目的是什么? 把文本信息转化为人们可利用的知识. 举例来说,下面的图表利用文本挖掘技术对库克ip ...

  7. CSS简单选择器的学习笔记

    我们知道通过CSS定义页面样式的时候要用到各种各样的选择器,正确的使用选择器是我们能够正确使用CSS做页面样式的基础.下面是我学习选择器的一个简易笔记,举一些简单的例子. 为了方便展示,我选择在内部的 ...

  8. C语言实现简单的哈希表

    这是一个简单的哈希表的实现,用c语言做的. 哈希表原理 这里不讲高深理论,只说直观感受.哈希表的目的就是为了根据数据的部分内容(关键字),直接计算出存放完整数据的内存地址. 试想一下,如果从链表中根据 ...

  9. 记一次maxwell报错:Couldn't find table 'violation_info' in database och_evcard_data

    往常maxwell是正常跑的,但是突然今天报错: Couldn't find table 'violation_info' in database och_evcard_data 而且这个库和这个表, ...

  10. UVA 1393 Highways,UVA 12075 Counting Triangles —— (组合数,dp)

    先看第一题,有n*m个点,求在这些点中,有多少条直线,经过了至少两点,且不是水平的也不是竖直的. 分析:由于对称性,我们只要求一个方向的线即可.该题分成两个过程,第一个过程是求出n*m的矩形中,dp[ ...