C - Covered Points Count

CodeForces - 1000C

You are given nn segments on a coordinate line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.

Your task is the following: for every k∈[1..n]k∈[1..n], calculate the number of points with integer coordinates such that the number of segments that cover these points equals kk. A segment with endpoints lili and riri covers point xx if and only if li≤x≤rili≤x≤ri.

Input

The first line of the input contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of segments.

The next nn lines contain segments. The ii-th line contains a pair of integers li,rili,ri (0≤li≤ri≤10180≤li≤ri≤1018) — the endpoints of the ii-th segment.

Output

Print nn space separated integers cnt1,cnt2,…,cntncnt1,cnt2,…,cntn, where cnticnti is equal to the number of points such that the number of segments that cover these points equals to ii.

Examples

Input

30 31 33 8

Output

6 2 1

Input

31 32 45 7

Output

5 2 0

Note

The picture describing the first example:

Points with coordinates [0,4,5,6,7,8][0,4,5,6,7,8] are covered by one segment, points [1,2][1,2] are covered by two segments and point [3][3] is covered by three segments.

The picture describing the second example:

Points [1,4,5,6,7][1,4,5,6,7] are covered by one segment, points [2,3][2,3] are covered by two segments and there are no points covered by three segments.

题意:

给你n个线段

让你输出有多少个点被1~n个线段覆盖?

思路:

将线段拆成点,左端点权值为1,右端点权值为-1,离散化端点之后从左往右扫,过程中维护左端点和当前区间被多少个线段覆盖,统计答案就行了。

注意:

因为l~r线段中包括的点数是r-l+1,所以我们可以直接r++

map会根据firstkey 即ll排好序,所以可以直接for(auto : T)

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
ll l, r;
map<ll, ll> m;
ll ans[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n;
repd(i, 1, n) {
cin >> l >> r;
r++;
m[l]++;
m[r]--;
}
ll cnt = 0ll;
l = 0ll; for (auto x : m) {
ll len = x.fi - l;
ans[cnt] += len;
l = x.fi;
cnt += x.se;
}
repd(i, 1, n) {
cout << ans[i];
if (i != n) {
cout << " ";
} else {
cout << endl;
}
}
return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

C - Covered Points Count CodeForces - 1000C (差分,离散化,统计)的更多相关文章

  1. Educational Codeforces Round 46 C - Covered Points Count

    C - Covered Points Count emmm 好像是先离散化一下 注意 R需要+1 这样可以确定端点 emmm 扫描线?瞎搞一下? #include<bits/stdc++.h&g ...

  2. Covered Points Count(思维题)

    C. Covered Points Count time limit per test 3 seconds memory limit per test 256 megabytes input stan ...

  3. Covered Points Count CF1000C 思维 前缀和 贪心

     Covered Points Count time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  4. CodeForces 1000C Covered Points Count(区间线段覆盖问题,差分)

    https://codeforces.com/problemset/problem/1000/C 题意: 有n个线段,覆盖[li,ri],最后依次输出覆盖层数为1~n的点的个数. 思路: 区间线段覆盖 ...

  5. codeforces 1000C - Covered Points Count 【差分】

    题目:戳这里 题意:给出n个线段,问被1~n个线段覆盖的点分别有多少. 解题思路: 这题很容易想到排序后维护每个端点被覆盖的线段数,关键是端点值不好处理.比较好的做法是用差分的思想,把闭区间的线段改为 ...

  6. 【CF1000C】Covered Points Count(离散化+差分)

    点此看题面 大致题意: 给出\(n\)条线段,分别求有多少点被覆盖\(1\)次.\(2\)次...\(n\)次. 正常的算法 好吧,这道题目确实有个很简单的贪心做法(只可惜我做的时候没有想到,结果想了 ...

  7. cf1000C Covered Points Count (差分+map)

    考虑如果数字范围没有这么大的话,直接做一个差分数组就可以了 但现在变大了 所以要用一个map来维护 #include<bits/stdc++.h> #define pa pair<i ...

  8. Educational Codeforces Round 46 (Rated for Div. 2) C. Covered Points Count

    Bryce1010模板 http://codeforces.com/problemset/problem/1000/C 题意:问你从[l,r]区间的被多少条线覆盖,列出所有答案. 思路:类似括号匹配的 ...

  9. EDU 50 E. Covered Points 利用克莱姆法则计算线段交点

    E. Covered Points 利用克莱姆法则计算线段交点.n^2枚举,最后把个数开方,从ans中减去. ans加上每个线段的定点数, 定点数用gcs(△x , △y)+1计算. #include ...

随机推荐

  1. vue cli创建typescript项目

    使用最新的Vue CLI @vue/cli创建typescript项目,使用vue -V查看当前的vue cli版本 安装命令 npm install -g @vue-cli 创建项目 vue cre ...

  2. android#嵌入式布局并创建自定义控件

    一.如何在android中嵌入布局文件: 新建一个布局title.xml,该文件为公共文件 <LinearLayout xmlns:android="http://schemas.an ...

  3. 双系统删除Linux系统

    1.首先解决Linux的grub引导问题.电脑先安装了Windows10,然后又安装了Linux,grub直接覆盖了Windows的引导, 所以每次开机都是进入了Linux的grub引导,现在我们需要 ...

  4. nRF5 SDK Bootloader and DFU moudles(3)

    DFU控制点特性用于控制DFU过程的状态. 通过写入该特征来请求所有DFU程序. 标记过程结束的响应将作为通知收到. BLE传输 Transfer of an init packet DFU控制器首先 ...

  5. gzip压缩配置

    gzip on;gzip_buffers 32 4K;gzip_comp_level 6;gzip_min_length 200;gzip_types text/css text/xml applic ...

  6. [转帖]AARRR已是过去式,而RARRA才是更好的增长黑客模型

    AARRR已是过去式,而RARRA才是更好的增长黑客模型 管理.该方法论已成为了企业家创业的增长利器.但现在看来,AARRR已是过去式. http://www.woshipm.com/operate/ ...

  7. 在Docker Container 内部安装 Mono 的方法 ---From官网

    1.首先 mono 是什么 Mono是一个由Xamarin公司(先前是Novell,最早为Ximian)所主持的自由开放源代码项目. 该项目的目标是创建一系列匹配ECMA标准(Ecma-334和Ecm ...

  8. localStorage 杂记

    localStorage html5标准 Web 存储现在的主流浏览器,包括IE 8+.Chrome 4+.Firefox 3.5+.Opera 10.5+.Safari 4+.iPhone 2+.A ...

  9. Codeforces 1189D2. Add on a Tree: Revolution

    传送门 首先可以证明一颗树合法的充分必要条件是不存在某个节点的度数为 $2$ 首先它是必要的,考虑任意一条边连接的两点如果存在某一点 $x$ 度数为 $2$ ,那么说明 $x$ 还有连一条边出去,那么 ...

  10. lesson12Homework

    package StringPractice; public class arrayTest { //1. 把A数组的前5个元素复制到B数组中. public static void main(Str ...