HDU4465 Candy
Candy
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3069 Accepted Submission(s): 1415
Special Judge
He has been eating one candy a day for several days. But one day, when opening a box, he finds no candy left. Before opening the other box, he wants to know the expected number of candies left in the other box. Can you help him?
For each test case, there is a single line containing an integer n (1 ≤ n ≤ 2 × 105) and a real number p (0 ≤ p ≤ 1, with 6 digits after the decimal).
Input is terminated by EOF.
Any answer with an absolute error less than or equal to 10-4 would be accepted.
10 0.400000 100 0.500000 124 0.432650 325 0.325100 532 0.487520 2276 0.720000
Case 1: 3.528175 Case 2: 10.326044 Case 3: 28.861945 Case 4: 167.965476 Case 5: 32.601816 Case 6: 1390.500000
有两个盒子各有n个糖(n<=2*105),每天随机选1个(概率分别为p,1-p),然后吃掉一颗糖。直到有一天打开盒子一看,这个盒子没有糖了。输入n,p,求此时另一个盒子里糖的个数的数学期望。
xcw0754的题解
思路:假设没糖的是A盒子,而B盒子还有0~n个糖。由于B盒子还有0个糖的情况的期望必为0,所以省略,只需要计算1~n的。
(1)当A盒没有糖时,B盒就可能有1~n个糖,概率为C(n+i,i)*(pn+1)*(1-p)n-i。为啥还带个大C?这是情况的种数(想象取糖时还有个顺序,有C种可能的顺序),不然的话,单靠这两个小于1的数是超级小的。
(2)根据(1)种的概率公式,穷举B盒可能还有 i 个糖,那么对于每种情况,期望值为i*C(n+i,i)*(pn+1)*(1-p)n-i,累加这些期望值就行了。同理,B盒没有糖也是这样算,只是概率换成了(1-p)。两种情况的累加期望就是答案。
(3)这样还是不行,求C时会爆LL,对p求幂时结果又太小,精度损失严重。C(n+i,i)*(pn+1)*(1-p)n-i这个式子的结果本身是不大的。考虑取这个式子对数,化成相加的形式x=logC(n+i,i)+ log(pn+1)+log(1-p)n-i ,(注意指数可以提到前面作为乘的形式),求出x作为指数来求ex这样就OK了(这个函数是exp(x) )。
(4)这个C还是很难求,比如当n=200000时,i 还没有到10时,C(200000+10, 10)就爆了。对此,由于在穷举i时,C(n+i,i)是可以递推的,那么我们可以先将C给逐步取对数,再相加就行了。递推是这样的,c+=log((n+i)/i)。
(5)总复杂度是O(n)。时间在500ms以下。
#include<iostream>
#include<cmath>
#define il inline
#define co const
template<class T>T read(){
T data=0,w=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(T&x) {return x=read<T>();}
typedef long double LD;
co int N=4e5+1;
LD ln[N];
LD binom(int n,int m){
return ln[n]-ln[m]-ln[n-m];
}
LD solve(int n,LD p){
LD ans=0;
for(int i=0;i<=n;++i){
LD c=binom(2*n-i,n);
LD v1=c+(n+1)*log(p)+(n-i)*log(1-p);
LD v2=c+(n+1)*log(1-p)+(n-i)*log(p);
ans+=i*(exp(v1)+exp(v2));
}
return ans;
}
int main(){
for(int i=1;i<N;++i) ln[i]=ln[i-1]+log(i);
int kase=0,n;
LD p;
while(~scanf("%d%Lf",&n,&p))
printf("Case %d: %.6Lf\n",++kase,solve(n,p));
return 0;
}
HDU4465 Candy的更多相关文章
- [LeetCode] Candy 分糖果问题
There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...
- Leetcode Candy
There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...
- LeetCode 135 Candy(贪心算法)
135. Candy There are N children standing in a line. Each child is assigned a rating value. You are g ...
- [LeetCode][Java]Candy@LeetCode
Candy There are N children standing in a line. Each child is assigned a rating value. You are giving ...
- 【leetcode】Candy(hard) 自己做出来了 但别人的更好
There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...
- 【leetcode】Candy
题目描述: There are N children standing in a line. Each child is assigned a rating value. You are giving ...
- Codeforces Round #229 (Div. 2) C. Inna and Candy Boxes 树状数组s
C. Inna and Candy Boxes Inna loves sweets very much. She has n closed present boxes lines up in a ...
- [LintCode] Candy 分糖果问题
There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...
- POJ - 1666 Candy Sharing Game
这道题只要英语单词都认得,阅读没有问题,就做得出来. POJ - 1666 Candy Sharing Game Time Limit: 1000MS Memory Limit: 10000KB 64 ...
随机推荐
- nginx 开启gzip压缩
Nginx开启Gzip压缩功能, 可以使网站的css.js .xml.html 文件在传输时进行压缩,提高访问速度,! Web网站上的图片,视频等其它多媒体文件以及大文件,因为压缩效果不好,所以对于 ...
- hanlp分词工具应用案例:商品图自动推荐功能的应用
本篇分享一个hanlp分词工具应用的案例,简单来说就是做一图库,让商家轻松方便的配置商品的图片,最好是可以一键完成配置的. 先看一下效果图吧: 商品单个推荐效果:匹配度高的放在最前面 这个想法很好,那 ...
- MySQL主从同步报错1507
mysql 从库上手动删除partiton后,主库未做修改.后期主库上删除partiton后,出现问题. 故障现场 Last_Errno: 1507 Last_Error: Error 'Error ...
- TypeScript的类型
⒈TypeScript的类型 JavaScript语言的数据类型包括以下7种: 1.boolean(布尔),true || false 2.null,表明null值得特殊关键字,JavaScript是 ...
- J.U.C之AQS介绍
从JDK1.5开始,引入了并发包java.util.concurrent(J.U.C),并发容器里的同步容器AQS(AbstractQueuedSynchronizer)是J.U.C的核心,AQS底层 ...
- C++11 bind和function用法
function是一个template,定义于头文件functional中.通过function<int(int, int)> 声明一个function类型,它是“接受两个int参数.返回 ...
- shell习题第19题:最常用的命令
[题目要求] 查看使用最多的10个命令 [核心要点] history 或者 ~/.bash_history sort uniq [脚本] #!/bin/bash # history就是调用cat ~/ ...
- xshell和xftp过期解决办法
去官网 xshell:https://www.netsarang.com/download/down_form.html?code=522 xftp:https://www.netsarang.com ...
- Delphi cxpagecontrol融合窗体
功能说明: 一.在需要融合的每个窗体加一句 initialization RegisterClasses([TFrmDataDict]); //类名 二.cxpagecontrol融合窗体,在调用时 ...
- SMTP实现发送邮箱2(封装版)
SMTP.h #ifndef __SMTP_H__ //避免重复包含 #define __SMTP_H__ #include <iostream> #include <list> ...