HDU4465 Candy
Candy
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3069 Accepted Submission(s): 1415
Special Judge
He has been eating one candy a day for several days. But one day, when opening a box, he finds no candy left. Before opening the other box, he wants to know the expected number of candies left in the other box. Can you help him?
For each test case, there is a single line containing an integer n (1 ≤ n ≤ 2 × 105) and a real number p (0 ≤ p ≤ 1, with 6 digits after the decimal).
Input is terminated by EOF.
Any answer with an absolute error less than or equal to 10-4 would be accepted.
10 0.400000 100 0.500000 124 0.432650 325 0.325100 532 0.487520 2276 0.720000
Case 1: 3.528175 Case 2: 10.326044 Case 3: 28.861945 Case 4: 167.965476 Case 5: 32.601816 Case 6: 1390.500000
有两个盒子各有n个糖(n<=2*105),每天随机选1个(概率分别为p,1-p),然后吃掉一颗糖。直到有一天打开盒子一看,这个盒子没有糖了。输入n,p,求此时另一个盒子里糖的个数的数学期望。
xcw0754的题解
思路:假设没糖的是A盒子,而B盒子还有0~n个糖。由于B盒子还有0个糖的情况的期望必为0,所以省略,只需要计算1~n的。
(1)当A盒没有糖时,B盒就可能有1~n个糖,概率为C(n+i,i)*(pn+1)*(1-p)n-i。为啥还带个大C?这是情况的种数(想象取糖时还有个顺序,有C种可能的顺序),不然的话,单靠这两个小于1的数是超级小的。
(2)根据(1)种的概率公式,穷举B盒可能还有 i 个糖,那么对于每种情况,期望值为i*C(n+i,i)*(pn+1)*(1-p)n-i,累加这些期望值就行了。同理,B盒没有糖也是这样算,只是概率换成了(1-p)。两种情况的累加期望就是答案。
(3)这样还是不行,求C时会爆LL,对p求幂时结果又太小,精度损失严重。C(n+i,i)*(pn+1)*(1-p)n-i这个式子的结果本身是不大的。考虑取这个式子对数,化成相加的形式x=logC(n+i,i)+ log(pn+1)+log(1-p)n-i ,(注意指数可以提到前面作为乘的形式),求出x作为指数来求ex这样就OK了(这个函数是exp(x) )。
(4)这个C还是很难求,比如当n=200000时,i 还没有到10时,C(200000+10, 10)就爆了。对此,由于在穷举i时,C(n+i,i)是可以递推的,那么我们可以先将C给逐步取对数,再相加就行了。递推是这样的,c+=log((n+i)/i)。
(5)总复杂度是O(n)。时间在500ms以下。
#include<iostream>
#include<cmath>
#define il inline
#define co const
template<class T>T read(){
T data=0,w=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(T&x) {return x=read<T>();}
typedef long double LD;
co int N=4e5+1;
LD ln[N];
LD binom(int n,int m){
return ln[n]-ln[m]-ln[n-m];
}
LD solve(int n,LD p){
LD ans=0;
for(int i=0;i<=n;++i){
LD c=binom(2*n-i,n);
LD v1=c+(n+1)*log(p)+(n-i)*log(1-p);
LD v2=c+(n+1)*log(1-p)+(n-i)*log(p);
ans+=i*(exp(v1)+exp(v2));
}
return ans;
}
int main(){
for(int i=1;i<N;++i) ln[i]=ln[i-1]+log(i);
int kase=0,n;
LD p;
while(~scanf("%d%Lf",&n,&p))
printf("Case %d: %.6Lf\n",++kase,solve(n,p));
return 0;
}
HDU4465 Candy的更多相关文章
- [LeetCode] Candy 分糖果问题
There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...
- Leetcode Candy
There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...
- LeetCode 135 Candy(贪心算法)
135. Candy There are N children standing in a line. Each child is assigned a rating value. You are g ...
- [LeetCode][Java]Candy@LeetCode
Candy There are N children standing in a line. Each child is assigned a rating value. You are giving ...
- 【leetcode】Candy(hard) 自己做出来了 但别人的更好
There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...
- 【leetcode】Candy
题目描述: There are N children standing in a line. Each child is assigned a rating value. You are giving ...
- Codeforces Round #229 (Div. 2) C. Inna and Candy Boxes 树状数组s
C. Inna and Candy Boxes Inna loves sweets very much. She has n closed present boxes lines up in a ...
- [LintCode] Candy 分糖果问题
There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...
- POJ - 1666 Candy Sharing Game
这道题只要英语单词都认得,阅读没有问题,就做得出来. POJ - 1666 Candy Sharing Game Time Limit: 1000MS Memory Limit: 10000KB 64 ...
随机推荐
- OpenGL.Qt551.问题
1.Qt551 + vs2013 + Win7x64 缘由:将“教程14:渲染到纹理.html(http://www.opengl-tutorial.org/cn/intermediate-tutor ...
- 第一次git到GitHub过程
首先在GitHub上创建一个仓库
- 阿里云ECS服务器 java JDK安装和配置 mysql安装和配置
最近配置了一下阿里云ecs服务的服务器环境,主要对java jdk环境的安装和配置,以及数据库mysql的安装和配置,趁着热乎,记录一下! 服务器用的系统是ubuntu_16_04_64的,版本16. ...
- 《鸟哥的Linux私房菜:基础学习篇》第二部分读书笔记
一.Linux的文件权限与目录配置 1. Linux用户身份与用户组记录的文件:默认情况下,/etc/passwd记录所有的系统账号与一般身份账号及root的相关信息,/etc/shadow记录个人的 ...
- 提取json字符串中指定格式中的参数值
直接上代码: import java.util.ArrayList; import java.util.regex.Matcher; import java.util.regex.Pattern; p ...
- leetcode 算法整理
一 字符串中的最大回文串(第5题) Given a string s, find the longest palindromic substring in s. You may assume that ...
- 剑指offer39:平衡二叉树
1 题目描述 输入一棵二叉树,判断该二叉树是否是平衡二叉树. 2 思路和方法 平衡二叉树,又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1 ...
- php7和PHP5对比的新特性和性能优化
1 抽象语法树( AST) 1)在 PHP5中,从 php 脚本到 opcodes 的执行的过程是: Lexing:词法扫描分析,将源文件转换成 token 流: Parsing:语法分析,在 ...
- Centos7下永久修改mysql5.6最大连接数
由于解除系统限制,设置最大连接数时,量力而行.https://blog.csdn.net/five3/article/details/79671317
- git、git bash、git shell
git 一个快速的分布式版本控制系统(工具),支持该工具的网站有Github等. shell 是linux.unix系统的外壳(区别于核),用于输入并执行命令(命令解析器). 它类似于DOS下的com ...