[TJOI2019]唱,跳,rap,篮球(生成函数,组合数学,NTT)
算是补了个万年大坑了吧。
根据 wwj 的题解(最准确),设一个方案 \(S\)(不一定合法)的鸡你太美组数为 \(w(S)\)。
答案就是 \(\sum\limits_{S}[w(S)=0]\)。
用二项式定理:\(\sum\limits_{S}[w(S)=0]=\sum\limits_{S}(1-1)^{w(S)}=\sum\limits_{S}\sum\limits_{i\ge 0}(-1)^i\binom{w(S)}{i}=\sum\limits_{i\ge 0}(-1)^i\sum\limits_{S}\binom{w(S)}{i}\)。
后面那个求和号,就是求对于所有方案,从鸡你太美组数中选出 \(i\) 组的方案数之和。
枚举被选出的组的位置,这里一共有 \(\binom{n-3i}{i}\) 种方案。(捆绑,一共有 \(n-3i\) 个人,其中 \(i\) 个人是鸡你太美)
剩下的排列方案,枚举每种爱好的人分别有多少个,\(\sum\limits_{w\le a-i}\sum\limits_{x\le b-i}\sum\limits_{y\le c-i}\sum\limits_{z\le d-i}[w+x+y+z=n-4i]\frac{(n-4i)!}{w!x!y!z!}\)。
明显是个卷积,对每个 \(i\) 做一遍 NTT 就好了。
时间复杂度 \(O(n^2\log n)\)。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=2222,mod=998244353;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,a,b,c,d,fac[maxn],invfac[maxn],A[maxn],B[maxn],C[maxn],D[maxn],F[maxn],lim,l,rev[maxn],ans;
int qpow(int a,int b){
int ans=1;
for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) ans=1ll*ans*a%mod;
return ans;
}
void init(int upr){
for(lim=1,l=0;lim<upr;lim<<=1,l++);
FOR(i,0,lim-1) rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
}
void NTT(int *A,int tp){
FOR(i,0,lim-1) if(i<rev[i]) swap(A[i],A[rev[i]]);
for(int i=1;i<lim;i<<=1)
for(int j=0,Wn=qpow(3,mod-1+tp*(mod-1)/(i<<1));j<lim;j+=i<<1)
for(int k=0,w=1;k<i;k++,w=1ll*w*Wn%mod){
int x=A[j+k],y=1ll*A[i+j+k]*w%mod;
A[j+k]=(x+y)%mod;
A[i+j+k]=(x-y+mod)%mod;
}
if(tp==-1){
int linv=qpow(lim,mod-2);
FOR(i,0,lim-1) A[i]=1ll*A[i]*linv%mod;
}
}
int calc(int x){
init(a+b+c+d-4*x);
FOR(i,0,lim-1) A[i]=B[i]=C[i]=D[i]=0;
FOR(i,0,a-x) A[i]=invfac[i];
FOR(i,0,b-x) B[i]=invfac[i];
FOR(i,0,c-x) C[i]=invfac[i];
FOR(i,0,d-x) D[i]=invfac[i];
NTT(A,1);NTT(B,1);NTT(C,1);NTT(D,1);
FOR(i,0,lim-1) F[i]=1ll*A[i]*B[i]%mod*C[i]%mod*D[i]%mod;
NTT(F,-1);
// printf("calc(%d),f=%d,fac=%d\n",x,F[n-4*x],fac[n-4*x]);
return 1ll*fac[n-4*x]*F[n-4*x]%mod;
}
int CCC(int n,int m){
return 1ll*fac[n]*invfac[m]%mod*invfac[n-m]%mod;
}
int main(){
n=read();a=read();b=read();c=read();d=read();
fac[0]=1;
FOR(i,1,n) fac[i]=1ll*fac[i-1]*i%mod;
invfac[n]=qpow(fac[n],mod-2);
ROF(i,n-1,0) invfac[i]=1ll*invfac[i+1]*(i+1)%mod;
FOR(i,0,min(n/4,min(a,min(b,min(c,d))))){
int s=1ll*CCC(n-3*i,i)*calc(i)%mod;
// printf("s=%d\n",s);
if(i%2==0) ans=(ans+s)%mod;
else ans=(ans-s+mod)%mod;
}
printf("%d\n",ans);
}
[TJOI2019]唱,跳,rap,篮球(生成函数,组合数学,NTT)的更多相关文章
- [bzoj5510]唱跳rap和篮球
显然答案可以理解为有(不是仅有)0对情况-1对情况+2对情况-- 考虑这个怎么计算,先计算这t对情况的位置,有c(n-3t,t)种情况(可以理解为将这4个点缩为1个,然后再从中选t个位置),然后相当于 ...
- 将Android手机无线连接到Ubuntu实现唱跳Rap
您想要将Android设备连接到Ubuntu以传输文件.查看Android通知.以及从Ubuntu桌面发送短信 – 你会怎么做?将文件从手机传输到PC时不要打电话给自己:使用GSConnect就可以. ...
- [TJOI2019]唱、跳、rap和篮球_生成函数_容斥原理_ntt
[TJOI2019]唱.跳.rap和篮球 这么多人过没人写题解啊 那我就随便说说了嗷 这题第一步挺套路的,就是题目要求不能存在balabala的时候考虑正难则反,要求必须存在的方案数然后用总数减,往往 ...
- [TJOI2019]唱、跳、rap和篮球——NTT+生成函数+容斥
题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(- ...
- [luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)
[luogu5339] [TJOI2019]唱.跳.rap和篮球(容斥原理+组合数学)(不用NTT) 题面 略 分析 首先考虑容斥,求出有i堆人讨论的方案. 可以用捆绑法,把每堆4个人捆绑成一组,其他 ...
- Luogu5339 [TJOI2019]唱、跳、rap和篮球 【生成函数,NTT】
当时看到这道题的时候我的脑子可能是这样的: My left brain has nothing right, and my right brain has nothing left. 总之,看到&qu ...
- [LOJ3106][TJOI2019]唱、跳、rap和篮球:DP+生成函数+NTT+容斥原理
分析 令\(f(i)\)表示共\(i\)组同学讨论cxk的位置的方案数(不考虑其他位置上的人的爱好),这个数组可以很容易地通过依次考虑每个位置是否是四个人中最后一个人的位置来递推求解,时间复杂度\(O ...
- [TJOI2019]唱、跳、rap和篮球——容斥原理+生成函数
先附一组sd图 然后放上原题链接 注意,队伍不同指的是喜好不同,不是人不同 先想到\(DP\),然后你会发现并没有什么优秀的状态设计,然后我们考虑容斥 设\(lim\)表示选的癌坤组数的上限,\(f_ ...
- 【题解】Luogu P5339 [TJOI2019]唱、跳、rap和篮球
原题传送门 这题zsy写的是\(O(n^2)\),还有NTT\(O(n^2\log n)\)的做法.我的是暴力,\(O(\frac{a b n}{4})\),足够通过 考虑设\(f(i)\)表示序列中 ...
随机推荐
- HTML连载40-盒子宽度和高度的练习、box-sizing属性
一.判断方法 1.判断是否元素宽高为200的盒子 只需要看:边框+内边距+内容宽度/内容高度的值是否等于200 2.判断是否内容宽高为100的盒子 只需要看:width和heght的值是否等于100 ...
- 把ping的结果写入文件
写一个sh文件: #!/bin/bash while true do $|>&` done 保存成ping.sh,赋可执行权限: chmod +x ping.sh 执行: sh ./pi ...
- Freemarker入门Demo
1:工程引入依赖 <dependency> <groupId>org.freemarker</groupId> <artifactId>freemark ...
- Lucene的全文检索学习
Lucene的官方网站(Apache的顶级项目):http://lucene.apache.org/ 1.什么是Lucene? Lucene 是 apache 软件基金会的一个子项目,由 Doug C ...
- iis7 下配置 ASP.NET MVC 项目遇到的问题 (WIN7 64位 旗舰版 第一次配置站点)
转自 https://www.cnblogs.com/Leo_wl/p/3866625.html,再次感谢 指定的目录或文件在 Web 服务器上不存在. URL 拼写错误. 某个自定义筛选器或模块(如 ...
- MySql数据库中正则表达式
命令 说明 ^ 在字符的开启处进行匹配 $ 在字符的末尾处进行匹配 . 匹配任何字符(包括回车和新行) [-.] 匹配括号内的任意单个字符 [m-n] 匹配m到n之间的任意单个字符,例如[0-9],[ ...
- SAP 同一个序列号可以同时出现在2个不同的HU里?
SAP 同一个序列号可以同时出现在2个不同的HU里? 答案是可以的. 如下图示,HU 180141003288里的序列号11810010540121, 而序列号11810010540121已经出现在另 ...
- python 的三元操作符
条件表达式(三元操作符) 1.有了这个三元操作符的条件表达式,你可以使用一条语句来完成下面的条件判断和赋值操作: x,y=4,5 if x<y: temp = x else: temp = ...
- MarkdownPad 2破解
MarkdownPad 2 是一款较不错的Markdown编辑器,可快速将文本转换为美观的HTML/XHTML的网页格式代码,且操作方便,用户可以通过键盘快捷键和工具栏按钮来使用或者移除Markdow ...
- linux7系统进入单用户模式
1.重启系统,在出现选择内核界面的时候按“e”键 2.移动光标到红色找到LANG=zh_CN.UTF-8 增加“init=/sysroot/bin/sh” 修改后如下图 3.使用"ctrl+ ...