P3719 [AHOI2017初中组]rexp

没有什么算法的题做起来真不适应,这道题深深讽刺了我想用栈维护匹配括号个数的想法;

递归解决就行了;

时刻注意函数返回值是什么,边界条件是什么;

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e5+;
typedef double dd;
typedef long long ll;
ll n;
ll a[maxn];
ll id[maxn]; ll f[maxn],g[maxn]; ll b1[maxn],b2[maxn]; int len; ll query_front(int x)
{
ll ans=;
for(;x;x-=x&(-x)) ans=max(b1[x],ans);
return ans;
} ll query_back(int x)
{
ll ans=;
for(;x;x-=x&(-x)) ans=max(b2[x],ans);
return ans;
} void add_front(int x,ll y)
{
for(;x<=len;x+=x&(-x)) b1[x]=max(b1[x],y);
} void add_back(int x,ll y)
{
for(;x<=len;x+=x&(-x)) b2[x]=max(b2[x],y);
} dd ans; int qw[maxn]; int main()
{
scanf("%lld",&n);
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i]);
id[i]=a[i];
}
sort(id+,id+n+);
len=unique(id+,id+n+)-id-;
for(int i=;i<=n;i++) qw[i]=lower_bound(id+,id+len+,a[i])-id;
for(int i=;i<=n;i++)
{
f[i]=query_front(qw[i]-)+a[i];
g[n-i+]=query_back(qw[n-i+]-)+a[n-i+];
add_front(qw[i],f[i]);
add_back(qw[n-i+],g[n-i+]);
}
for(int i=;i<=n;i++)
{
ans=max(ans,max((dd)f[i],((dd)f[i]+(dd)g[i]-(dd)a[i])/2.0));
}
printf("%.3lf",ans);
return ;
}

P3719 [AHOI2017初中组]rexp——递归模拟的更多相关文章

  1. P3719 [AHOI2017初中组]rexp

    P3719 [AHOI2017初中组]rexp一开始想的是类似计算式子的值的东西,用栈.然后发现处理最大值很麻烦,因为处理的很像子过程,所以考虑递归来做.碰到'('就递归一次,碰到'|'就取最大值再递 ...

  2. 洛谷P3719 [AHOI2017初中组]rexp

    洛谷P3719 [AHOI2017初中组]rexp 题目背景 以下为不影响题意的简化版题目. 题目描述 给出一个由(,),|,a组成的序列,求化简后有多少个a. 化简规则: 1.形如aa...a|aa ...

  3. luogu3720 [AHOI2017初中组]guide[最短路]

    初中组..唉 题意有点误解,当前在x点走一步,gps产生代价条件是沿非x到n的最短路走. 直接倒着跑两遍$i\sim n$的两种最短路,然后枚举每条边走的时候是否可以在两种最短路上,不是就产生1个代价 ...

  4. poj 1472(递归模拟)

    题意:就是让你求出时间复杂度. 分析:由于指数最多为10次方,所以可以想到用一个数组保存各个指数的系数,具体看代码实现吧! 代码实现: #include<cstdio> #include& ...

  5. P1010 幂次方 递归模拟

    题目描述 任何一个正整数都可以用22的幂次方表示.例如 137=2^7+2^3+2^0137=27+23+20 同时约定方次用括号来表示,即a^bab 可表示为a(b)a(b). 由此可知,13713 ...

  6. P2475 [SCOI2008]斜堆(递归模拟)

    思路 可并堆真是一种神奇的东西 不得不说这道题是道好题,虽然并不需要可并堆,但是能加深对可并堆的理解 首先考虑斜堆的性质,斜堆和左偏树相似,有如下的性质 一个节点如果有右子树,就一定有左子树 最后插入 ...

  7. 题解 P3717 【[AHOI2017初中组]cover】

    题目链接 本题的大致思路就是搜索. 将矩阵初始化成false.先把灯塔标记.在搜一遍灯塔能照到的点并标记.最后搜一遍找被灯塔标记的个数. 详细解释见题解. 题解走起. #include<bits ...

  8. P3717 [AHOI2017初中组]cover

    题目背景 以下为不影响题意的简化版题目. 题目描述 一个n*n的网格图上有m个探测器,每个探测器有个探测半径r,问这n*n个点中有多少个点能被探测到. 输入输出格式 输入格式: 第一行3个整数n,m, ...

  9. 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide

    [题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...

随机推荐

  1. Java冒泡排序与快速排序笔记

    public class Sort { public static void sort() { Scanner input = new Scanner(System.in); int sort[] = ...

  2. 原生JS获取HTML DOM元素的8种方法

    JS获取DOM元素的方法(8种) 通过ID获取(getElementById) 通过name属性(getElementsByName) 通过标签名(getElementsByTagName) 通过类名 ...

  3. 如何通过webpack和node来实现多个静态页面html,多个入口,能打包能热加载开发环境调试

    demo已经传到了github,地址:https://github.com/13476075014/04.node-vue-project/tree/master/03.singlewebpack: ...

  4. C# 后台获取GridView列表的值

    int rowIndex = ((GridViewRow)((Button)sender).NamingContainer).RowIndex;//获取gridview中的行号            ...

  5. eclipse debug问题

    出现上面的问题 可能是电脑了 工具栏的run >skip all Breakpoint : 解决办法 再点一次: Eclipse debug不跳转 解决办法

  6. Wireshark 分析Linux SSh 远程登录延迟问题

    1.PuTTy远程登录延迟的分析 现象问题描述:在使用kali linux 的时候喜欢在后台运行而在Windows主机系统上安装PuTTY来实现远程登录 发现每次输入密码的时候会存在延迟10s的情况, ...

  7. 云计算第二阶段shell脚本

    pstree               #查看进程树 cat /etc/shells       #查看系统安装的所有shell解释器 yum -y install ksh             ...

  8. 小程序缓存Storage的基本用法

    wx.setStorageSync('key', 'hello world') 然后在小程序调试器里面的Storage里面就能看到设置的值.在小程序里面,如果用户不主动清除缓存,这个缓存是一直在的. ...

  9. Kotlin枚举与委托深入详解

    枚举: 基本上跟Java的差不多,这里就过一遍既可,如下: 还可以接收参数,如下: 枚举还可以定义方法,如下: 看下错误提示: 所以可以这样: 然后咱们再冒号之前定义对象,如下: 下面来使用一下: 当 ...

  10. Kotlin使用处协变的意义与用法

    在上一次https://www.cnblogs.com/webor2006/p/11294849.html中对于Java的协变和Kotlin的协变提到了它们的区别,回忆一下: 其实在Kotlin中也有 ...