本文原创,转载请注明出处 http://www.cnblogs.com/gufeiyang

  

本文主要分两部分,boosting 与 随机森林。

    “三个臭皮匠顶一个诸葛亮”是说三个不聪明的人集合在一起往往能战胜一个聪明的人。 在分类上, 如果给定了若干个弱分类器,是否能够集成为一个强分类器。答案是肯定的,boosting就是这么一个思想。

boosting里边最有名的算法是adaboost。 adaboost是迭代产生集成分类器的算法。 通过每次增大分类错误case的权重,减小分类正确的权重,来达到准确分类的目的。

具体流程如下:

                 

这是整个boosting的过程。 但是细心的话会发现上述的算法只能解决二元分类的问题,对于多元分类最终的预测函数为:

随机森林:既然是森林,那么就要有很多的树, 比如数目为T。 随机森林的每棵树都是一个决策树。 对于给的数据集M,数据集有n条记录,有放回地抽样n次,用抽样的数据集建立一棵决策树。这样重复T次就建立了T个决策树。 需要注意的是:每棵树选择不同的featurns作为树的分裂属性。 这样子就会有T个弱分类的决策树形成了。 这棵树可以通过投票的方式对新的数据进行分类。

随机森林与boosting的集合, 在利用boosting算法的时候,分类器H(X)选择决策树(随机森林的方法建立),这样就形成了有boosting思想的决策树。 boosting是一个将若干弱分类组合形成强分类器的算法, 有着很好的泛化能力。

boosting与随机森林的更多相关文章

  1. [白话解析] 通俗解析集成学习之bagging,boosting & 随机森林

    [白话解析] 通俗解析集成学习之bagging,boosting & 随机森林 0x00 摘要 本文将尽量使用通俗易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来 ...

  2. 机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  3. 机器学习中的算法——决策树模型组合之随机森林与GBDT

    前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over- ...

  4. 决策树模型组合之(在线)随机森林与GBDT

    前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时, 单决策树又有一些不好的地方,比如说容易over ...

  5. 机器学习中的算法-决策树模型组合之随机森林与GBDT

    机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使 ...

  6. 随机森林与GBDT

    前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over- ...

  7. 决策树模型组合之随机森林与GBDT

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  8. 决策树模型组合之随机森林与GBDT(转)

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  9. 机器学习 —— 决策树及其集成算法(Bagging、随机森林、Boosting)

    本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树--------------------------------------------- ...

随机推荐

  1. iOS - Base64转图片&&图片转Base64

    记录一个小功能 app传base64位上去,服务器拿到后转图片保存,当app请求拿回用户图片时,服务器再把图片转base64字符串返回给app,app再转图片 // 64base字符串转图片 - (U ...

  2. Oracle统计、分析和优化环境配置

    Oracle统计.分析和优化环境配置 创建批处理文件Login.bat 用于初始化设置系统环境 Login.bat @echo off title eoda mode con cols=140 col ...

  3. Jmeter学习笔记(七)——监听器元件之察看结果树

    在jmeter中,如果我们需要查看请求结果就需要添加查看结果树,这个监听器元件有那些功能呢? 一.察看结果树界面如下 二.察看结果树界面功能说明 1.所有数据写入文件 (1)文件名:可以通过浏览,选择 ...

  4. SAP云平台CloudFoundry环境里route 超过quota的错误处理

    试图往SAP Cloud Platform CloudFoundry用命令行CLI部署应用时,遇到如下错误: 原因是因为这个新建的名为Haytham的subaccount没有分配application ...

  5. D3.js画思维导图(转)

    思维导图的节点具有层级关系和隶属关系,很像枝叶从树干伸展开来的形状.在前面讲解布局的时候,提到有五个布局是由层级布局扩展来的,其中的树状图(tree layout)和集群图(cluster layou ...

  6. nginx 高并发配置参数

    一.一般来说nginx 配置文件中对优化比较有作用的为以下几项: 1.  worker_processes 8; nginx 进程数,建议按照cpu 数目来指定,一般为它的倍数 (如,2个四核的cpu ...

  7. MySQL Backup--Xtrabackup备份参数

    Xtrabackup备份参数 参数选项: innobackupex [--compress] [--compress-threads=NUMBER-OF-THREADS] [--compress-ch ...

  8. 「8-27

    没有别的目的, 是最近发现一个小软件, 用起来感觉很不错, 所以想分享给大家. 首先这是一个 macOS 软件, 它的功能也很简单, 就是在菜单栏显示日期时间, 点按它可以显示日历, 没错, 简单到是 ...

  9. mac中git flow使用

    初始化 git flow init   最后就一路回车选择默认的就ok了 常用命令以及分支:分支介绍:1.master.只有一个,并且不会在master上进行代码的操作.2.develop.只有一个, ...

  10. Bash基础——减号-

    参考:Bash基础——pipe pipe命令在 bash 的连续的处理程序中相当重要.在pipe命令当中,常常会使用到前一个命令的 stdout 作为这次的 stdin , 某些命令需要用到文件名 ( ...