HDU 6595 Everything Is Generated In Equal Probability (期望dp,线性推导)
Everything Is Generated In Equal Probability
\[
Time Limit: 1000 ms\quad Memory Limit: 131072 kB
\]
题意
给出一个 \(N\),以相等的概率生成 \(n\) 且 \(n \in [1, N]\),在以相等的概率生成长度为 \(n\) 的数组,最后将生成的数组扔到 \(CALCULATE\) 函数并返回一个数,问这个数的期望。
思路
先解释一下样例是怎么得来的。
令 \(dp[array]\) 表示数组 \(array\) 扔到函数里得到的期望,\(pair[array]\) 表示数组 \(array\) 中逆序对的数量。
则
\[
dp[array] = \frac{1}{A_{len(array)}^{len(array)}} \sum\left(dp[subsequence] + pair[subsequence]\right) \\
ans = \frac{1}{N}\sum_{n=1}^{N} \frac{1}{A_n^n}\sum_{len(array)=n}\left(dp[array] + pair[array]\right)
\]
\(N=2\):
- \(\frac{1}{2}\) 概率得到 \(n=1\),只有一个 \(array=[1]\),显然 \(dp[ [1] ] = 0\)
- \(\frac{1}{2}\) 概率得到 \(n=2\),此时有 \(\frac{1}{2}\) 生成 \(array=[1,2]\),\(\frac{1}{2}\) 生成 \(array=[2,1]\),则
\[
\begin{aligned}
&dp[[1,2]] = \frac{1}{4}((dp[[1]]+0) + (dp[[2]]+0) + (dp[[1,2]]+0) + (dp[[\emptyset]]+0)) \\
\implies&dp[[1,2]] = 0\\
&dp[[2,1]] = \frac{1}{4}((dp[[1]]+0) + (dp[[2]]+0) + (dp[[2,1]]+1) + (dp[[\emptyset]]+0)) \\
\implies&dp[[2,1]] = \frac{1}{3}\\
&\emptyset 表示空集
\end{aligned}
\]
所以当 \(N=2\) 时的期望就是
\[
ans = \frac{1}{2}\left((dp[[1]]+0) + \frac{1}{2}((dp[[1,2]]+0) + (dp[[2,1]]+1))\right)= \frac{1}{3}
\]
\(N=3\) 同理,可以自行计算并算出每个序列的 \(dp\) 值。
计算 \(N=3\) 后,我们发现 \(dp[[1,2,3]] = \frac{0}{3}, dp[[2,1,3]] = \frac{1}{3}, dp[[2,3,1]]=\frac{2}{3},dp[[3,2,1]]=\frac{3}{3}\),在加上之前算出的 \(dp[[1,2]] = \frac{0}{3}\),\(dp[[2,1]] = \frac{1}{3}\),我们可以猜想 \(dp[array] = \frac{pari[array]}{3}\),可以继续计算 \(n=4\) 的情况,同样满足猜想。
回到最初始的式子
\[
\begin{aligned}
ans &= \frac{1}{N}\sum_{n=1}^{N} \frac{1}{A_n^n}\sum_{len(array)=n}\left(dp[array] + pair[array]\right) \\
&= \frac{1}{N}\sum_{n=1}^{N} \frac{1}{A_n^n} \left(\frac{4\sum_{len(array)=n} pair[array]}{3}\right)
\end{aligned}
\]
令 \(f[i]\) 表示 \(\sum_{len(array)=i} pair[array]\),只要计算出这个,最后的答案就可以 \(O\left(N\right)\) 得到。
对于一个长度为 \(n\) 的序列,我们假设把这个序列的最后一个数字拿掉,前面的 \(n-1\) 个数的 \(pair\) 数其实就可以看成 \(f[n-1]\) 的贡献,一共有 \(n\) 个数字可以拿掉,所以前 \(n-1\) 个数字这部分的总贡献就是\(n*f[n-1]\)。
现在把最后一个数字加进来,当加入的数字是 \(i\) 时,和其他 \(n-1\) 个数字会产生 \(\left(n-i\right)\) 对逆序对,剩余的 \(n-1\) 个数都在前面,可以随便排列,所以它的贡献就是 \(A_{n-1}^{n-1}\left(n-i\right)\),则最后一个数字这部分的总贡献就是 \(\sum_{i=1}^{n} A_{n-1}^{n-1}\left(n-i\right) = A_{n-1}^{n-1} \sum_{i=1}^{n-1}i\)。
现在就可以得到 \(f[i]\) 的线性递推式
\[
f[n] = n*f[n-1]+A_{n-1}^{n-1}\sum_{i=1}^{n-1}i
\]
我们队最后把 \(f[i]\) 扔到 \(oeis\) 里面去....发现居然有 \(O\left(1\right)\) 公式 \(\frac{n!n(n-1)}{4}\),打扰了....
最后只要把 \(f[i]\) 打表预处理出来,最后的答案就可以进一步化简
\[
ans = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{A_n^n}\frac{4f[n]}{3}
\]
最后发现网上说 \(ans\) 居然又有 \(O\left(1\right)\) 公式 \(\frac{N^2-1}{9}\)
HDU 6595 Everything Is Generated In Equal Probability (期望dp,线性推导)的更多相关文章
- HDU-多校2-Everything Is Generated In Equal Probability(公式+逆元)
Problem Description One day, Y_UME got an integer N and an interesting program which is shown below: ...
- hdu多校第二场 1005 (hdu6595) Everything Is Generated In Equal Probability
题意: 给定一个N,随机从[1,N]里产生一个n,然后随机产生一个n个数的全排列,求出n的逆序数对的数量,加到cnt里,然后随机地取出这个全排列中的一个非连续子序列(注意这个子序列可以是原序列),再求 ...
- 【HDOJ6595】Everything Is Generated In Equal Probability(期望DP)
题意:给定一个N,随机从[1,N]里产生一个n, 然后随机产生一个n个数的全排列,求出n的逆序数对的数量并累加ans, 然后随机地取出这个全排列中的一个子序列,重复这个过程,直到为空,求ans在模99 ...
- ACM的探索之Everything is Generated In Equal Probability! 后序补充丫!
Problem Desciption: 百度翻译后的汉化: 参见博客:https://www.cnblogs.com/zxcoder/p/11253099.html https://blog.csdn ...
- ACM的探索之Everything Is Generated In Equal Probability(这真的是很有趣的话语丫!)
---------------------------------------步履不停,奋勇前进! ------------------------难度真的是蛮大丫!后序补充!
- [hdu6595]Everything Is Generated In Equal Probability
计算一对逆序对的贡献,即在n个数期望要删多少步才能删掉其中的两个数,设f(n)表示此时的期望,则有方程$f[n]=3/4+(\sum_{i=2}^{n}f[i]\cdot c(n-2,i-2))/2^ ...
- HDU 4405 Aeroplane chess 期望dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Time Limit: 2000/1000 MS (Java/ ...
- HDU 4405 Aeroplane chess(期望dp)
Aeroplane chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- HDU 6656 Kejin Player (期望DP 逆元)
2019 杭电多校 7 1011 题目链接:HDU 6656 比赛链接:2019 Multi-University Training Contest 7 Problem Description Cub ...
随机推荐
- Kafka session.timeout.ms heartbeat.interval.ms参数的区别以及对数据存储的一些思考
Kafka session.timeout.ms heartbeat.interval.ms参数的区别以及对数据存储的一些思考 在计算机世界中经常需要与数据打交道,这也是我们戏称CURD工程师的原因之 ...
- English--动名词
English|动名词 开始动名词的学习,代表着在长难句的征途上又向前迈出了一步. 前言 目前所有的文章思想格式都是:知识+情感. 知识:对于所有的知识点的描述.力求不含任何的自我感情色彩. 情感:用 ...
- 50道Java线程面试题分析及答案
下面是Java线程相关的热门面试题,你可以用它来好好准备面试. 1) 什么是线程?线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理器编程 ...
- MethodInvoker委托,跨线程访问
Invoke(new MethodInvoker(delegate { textBox1.Enabled = true; })); 上面是简单缩写,也可以写成 private void btnOK_C ...
- python3 marshmallow学习
python3 marshmallow学习 官方文档:https://marshmallow.readthedocs.io/en/stable/ 安装: pip install -U marshmal ...
- 2019 珍岛java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.珍岛等公司offer,岗位是Java后端开发,因为发展原因最终选择去了珍岛,入职一年时间了,也成为了面试官,之 ...
- 树莓派Raspbian系统密码
树莓派Raspbian系统密码 树莓派Raspbian系统默认登录用户名为pi,该账户默认密码是raspberry(可在raspi-config中修改). 树莓派的Raspbian系统root用户默认 ...
- VUE组件2数据传递
传递数据 prop验证 除了传递数组,也可以传递对象 Vue.component('test',{ props:{ price:Number, unit: String } }) 如果price不是数 ...
- cmd查找并杀死被占用的端口的进程
java开发启动server的时候经常会遇到端口被占用的错误提示, 如果不想更换服务配置的端口号,那么怎么解决端口被占用的情况呢? 1. cmd窗口输入netstat -ano ,在列表中查看被占用的 ...
- JavaScript 流程控制(一)顺序结构与分支结构
语句:语句可以理解为一个行为,循环语句和判断语句就是典型的语句.一个程序有很多个语句组成,一般情况下分号;分割一个一个的语句:如果省略分号,则由解析器确定语句的结尾(不推荐使用) 一.流程控制 流程控 ...