Optimize Cube.js Performance with Pre-Aggregations
转自:https://cube.dev/blog/high-performance-data-analytics-with-cubejs-pre-aggregations/ 可以了解 Pre-Aggregations的处理流程
This is an advanced tutorial. If you are just getting started with Cube.js, I recommend checking this tutorial first and then coming back here.
One of the most powerful features of Cube.js is pre-aggregations. Coupled with data schema, it eliminates the need to organize, denormalize, and transform data before using it with Cube.js. The pre-aggregation engine builds a layer of aggregated data in your database during the runtime and maintains it to be up-to-date.

Upon an incoming request, Cube.js will first look for a relevant pre-aggregation. If it cannot find any, it will build a new one. Once the pre-aggregation is built, all the subsequent requests will go to the pre-aggregated layer instead of hitting the raw data. It could speed the response time by hundreds or even thousands of times.
Pre-aggregations are materialized query results persisted as tables. In order to start using pre-aggregations, Cube.js should have write access to the stb_pre_aggregations
schema where pre-aggregation tables will be stored.
Cube.js also takes care of keeping the pre-aggregation up-to-date. It performs refresh checks and if it finds that a pre-aggregation is outdated, it schedules a refresh in the background.
Creating a Simple Pre-Aggregation
Let’s take a look at the example of how we can use pre-aggregations to improve query performance.
For testing purposes, we will use a Postgres database and will generate around ten million records using the generate_series function.
$ createdb cubejs_test
The following SQL creates a table, orders
, and inserts a sample of generated records into it.
CREATE TABLE orders (
id SERIAL PRIMARY KEY,
amount integer,
created_at timestamp without time zone
);
CREATE INDEX orders_created_at_amount ON orders(created_at, amount);
INSERT INTO orders (created_at, amount)
SELECT
created_at,
floor((1000 + 500*random())*log(row_number() over())) as amount
FROM generate_series
( '1997-01-01'::date
, '2017-12-31'::date
, '1 minutes'::interval) created_at
Next, create a new Cube.js application if you don’t have any.
$ npm install -g cube.js
$ cubejs create test-app -d postgres
Change the content of .env
in the project folder to the following.
CUBEJS_API_SECRET=SECRET
CUBEJS_DB_TYPE=postgres
CUBEJS_DB_NAME=cubejs_test
Finally, generate a schema for the orders
table and start the Cube.js server.
$ cubejs generate -t orders
$ npm run dev
Now, we can send a query to Cube.js with the Orders.count
measure and Orders.createdAt
time dimension with granularity set to month
.
curl \
-H "Authorization: EXAMPLE-API-TOKEN" \
-G \
--data-urlencode 'query={
"measures" : ["Orders.amount"],
"timeDimensions":[{
"dimension": "Orders.createdAt",
"granularity": "month",
"dateRange": ["1997-01-01", "2017-01-01"]
}]
}' \
http://localhost:4000/cubejs-api/v1/load
Cube.js will respond with Continue wait, because this query takes more than 5 seconds to process. Let’s look at Cube.js logs to see exactly how long it took for our Postgres to execute this query.
Performing query completed:
{
"queueSize":2,
"duration":6514,
"queryKey":[
"
SELECT
date_trunc('month', (orders.created_at::timestamptz at time zone 'UTC')) \"orders.created_at_month\",
sum(orders.amount) \"orders.amount\"
FROM
public.orders AS orders
WHERE (
orders.created_at >= $1::timestamptz
AND orders.created_at <= $2::timestamptz
)
GROUP BY 1
ORDER BY 1 ASC limit 10000
",
[
"2000-01-01T00:00:00Z",
"2017-01-01T23:59:59Z"
],
[]
]
}
It took 6,514 milliseconds (6.5 seconds) for Postgres to execute the above query. Although we have an index on the created_at
and amount
columns, it doesn't help a lot in this particular case since we're querying almost all the dates we have. The index would help if we query a smaller date range, but still, it would be a matter of seconds, not milliseconds.
We can significantly speed it up by adding a pre-aggregation layer. To do this, add the following preAggregations
block to src/Orders.js
:
preAggregations: {
amountByCreated: {
type: `rollup`,
measureReferences: [amount],
timeDimensionReference: createdAt,
granularity: `month`
}
}
The block above instructs Cube.js to build and use a rollup type of pre-aggregation when the “Orders.amount” measure and “Orders.createdAt” time dimension (with “month” granularity) are requested together. You can read more about pre-aggregation options in the documentation reference.
Now, once we send the same request, Cube.js will detect the pre-aggregation declaration and will start building it. Once it's built, it will query it and send the result back. All the subsequent queries will go to the pre-aggregation layer.
Here is how querying pre-aggregation looks in the Cube.js logs:
Performing query completed:
{
"queueSize":1,
"duration":5,
"queryKey":[
"
SELECT
\"orders.created_at_month\" \"orders.created_at_month\",
sum(\"orders.amount\") \"orders.amount\"
FROM
stb_pre_aggregations.orders_amount_by_created
WHERE (
\"orders.created_at_month\" >= ($1::timestamptz::timestamptz AT TIME ZONE 'UTC')
AND
\"orders.created_at_month\" <= ($2::timestamptz::timestamptz AT TIME ZONE 'UTC')
)
GROUP BY 1 ORDER BY 1 ASC LIMIT 10000
",
[
"1995-01-01T00:00:00Z",
"2017-01-01T23:59:59Z"
],
[
[
"
CREATE TABLE
stb_pre_aggregations.orders_amount_by_created
AS SELECT
date_trunc('month', (orders.created_at::timestamptz AT TIME ZONE 'UTC')) \"orders.created_at_month\",
sum(orders.amount) \"orders.amount\"
FROM
public.orders AS orders
GROUP BY 1
",
[]
]
]
]
}
As you can see, now it takes only 5 milliseconds (1,300 times faster) to get the same data. Also, you can note that SQL has been changed and now it queries data from stb_pre_aggregations.orders_amount_by_created
, which is the table generated by Cube.js to store pre-aggregation for this query. The second query is a DDL statement for this pre-aggregation table.
Pre-Aggregations Refresh
Cube.js also takes care of keeping pre-aggregations up to date. Every two minutes on a new request Cube.js will initiate the refresh check.
You can set up a custom refresh check strategy by using refreshKey. By default, pre-aggregations are refreshed every hour.
If the result of the refresh check is different from the last one, Cube.js will initiate the rebuild of the pre-aggregation in the background and then hot swap the old one.
Next Steps
This guide is the first step to learning about pre-aggregations and how to start using them in your project. But there is much more you can do with them. You can find the pre-aggregations documentation reference here.
Also, here are some highlights with useful links to help you along the way.
Pre-aggregate queries across multiple cubes
Pre-aggregations work not only for measures and dimensions inside the single cube, but also across multiple joined cubes as well. If you have joined cubes, you can reference measures and dimensions from any part of the join tree. The example below shows how the Users.country
dimension can be used with the Orders.count
and Orders.revenue
measures.
cube(`Orders`, {
sql: `select * from orders`,
joins: {
Users: {
relationship: `belongsTo`,
sql: `${CUBE}.user_id = ${Users}.id`
}
},
// …
preAggregations: {
categoryAndDate: {
type: `rollup`,
measureReferences: [count, revenue],
dimensionReferences: [Users.country],
timeDimensionReference: createdAt,
granularity: `day`
}
}
});
Generate pre-aggregations dynamically
Since pre-aggregations are part of the data schema, which is basically a Javascript code, you can dynamically create all the required pre-aggregations. This guide covers how you can dynamically generate a Cube.js schema.
Time partitioning
You can instruct Cube.js to partition pre-aggregations by time using the partitionGranularity
option. Cube.js will generate not a single table for the whole pre-aggregation, but a set of smaller tables. It can reduce the refresh time and cost in the case of BigQuery for example.
Time partitioning documentation reference.
preAggregations: {
categoryAndDate: {
type: `rollup`,
measureReferences: [count],
timeDimensionReference: createdAt,
granularity: `day`,
partitionGranularity: `month`
}
}
Data Cube Lattices
Cube.js can automatically build rollup pre-aggregations without the need to specify which measures and dimensions to use. It learns from query history and selects an optimal set of measures and dimensions for a given query. Under the hood it uses the Data Cube Lattices approach.
It is very useful if you need a lot of pre-aggregations and you don't know ahead of time which ones exactly. Using autoRollup
will save you from coding manually all the possible aggregations.
You can find documentation for auto rollup here.
cube(`Orders`, {
sql: `select * from orders`,
preAggregations: {
main: {
type: `autoRollup`
}
}
});
Optimize Cube.js Performance with Pre-Aggregations的更多相关文章
- cube.js 开源模块化分析框架
cube.js 是一款很不错的模块化web 应用分析框架.cube.js 的设计主要是面向serverless 服务, 但是同时也支持所有rdbms, cube.js不是一个单体应用,包含了以下部分: ...
- cube.js 最近的一些更新
cube.js 是一个和不错的数据分析框架,最近又有了一些新的功能支持,以下是一些简单的 总结 基于web socket 的预览支持 react hooks api 支持 支持基于reecharts ...
- cube.js 通过presto-gateway 进行连接
cube.js 对于presto 的支持是通过presto-client 刚好简单修改了一个可以支持presto-gateway 连接的 以下是一个简单的集成,以及关于集成中原有的一些修改 环境准备 ...
- 通过patch 方式解决cube.js 集成cratedb 的问题
今天有写过一个简单的cube.js 集成cratedb 的说明,主要是在driver 上的兼容问题,处理方法是删除不兼容的代码 实际上我们也可以通过类似linux c 开发中的patch 方式解决,简 ...
- cube.js 集成cratedb 的尝试
cratedb 提供了pg协议的兼容,我们可以直接使用pg client 连接,但是也不是完整实现pg 协议的 以下是 cube.js 集成cratedb 的一些尝试 环境准备 docker-comp ...
- cube.js 新版本试用preosto
cube.js 新的版本添加了更多的数据库的支持,但是目前cubejs-cli 以及官方文档问题还挺多,使用不清晰,文档有明显的错误 以下演示presto 数据库的使用 环境准备 安装新版本的cube ...
- cube.js 最近版本的一些更新
有一段时间没有关注cube.js 了,刚好晚上收到一封来自官方的更新介绍,这里简单说明下 更多的数据驱动支持 bigquey, clickhouse snowflake,presto (很棒),hiv ...
- cube.js 学习 cube 连接mongodb 试用
cube.js 对于mongodb 的连接是通过mongodb bi connector(mysql 协议)处理的,以下为简单的试用 安装mongo bi connector 这个玩意用docker ...
- cube.js 学习 cube docker-compose 运行
cube.js 官方为我们也提供了backeng 部署的模型,为了测试方便以下是一个使用docker-compose 运行的demo 项目是一个集成gitbase 的demo,实际可以按照自己的项目修 ...
随机推荐
- 【OO学习】OO第四单元作业总结及OO课程总结
[OO学习]OO第四单元作业总结及OO课程总结 第四单元作业架构设计 第十三次作业 第十四次作业 总结 这两次作业架构思路上是一样的. 通过将需要使用的UmlElement,封装成Element的子类 ...
- 哪个参数用来区分请求来自客户(手机)端还是服务器(PC)端?
cookie 和 session 会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session. Cookie通过在客户端记录信息确定用 ...
- 敏感词检测、屏蔽设计(iOS & Android)
敏感词检测 服务器端最常使用的算法是DFA算法.如果服务器端使用java实现常规的DFA算法,假若... 源码:https://github.com/qiyer/DFA_Cplusplus
- python day 9: xlm模块,configparser模块,shutil模块,subprocess模块,logging模块,迭代器与生成器,反射
目录 python day 9 1. xml模块 1.1 初识xml 1.2 遍历xml文档的指定节点 1.3 通过python手工创建xml文档 1.4 创建节点的两种方式 1.5 总结 2. co ...
- springboot实现读写分离(基于Mybatis,mysql)
近日工作任务较轻,有空学习学习技术,遂来研究如果实现读写分离.这里用博客记录下过程,一方面可备日后查看,同时也能分享给大家(网上的资料真的大都是抄来抄去,,还不带格式的,看的真心难受). 完整代码:h ...
- 结合模板导出PDF文件
@Action("report_exportJasperPdf") public String exportJasperPdf() throws Exception{ ...
- Java关于 class类的基础方法
Class类的方法 1. getClasses 和 getDeclaredClasses getDeclaredClasses 获取到类里所有的的class ,interface 包括了private ...
- thinkphp5中使用phpmailer实现发送邮件功能
一.开启SMTP服务(使用php发送邮件需要用到SMTP服务,这里以163邮箱的SMTP服务为例). 1.登录163邮箱,在首页上找到“设置”. 2.选择开启的服务,一般都全选,POP3/SMTP/I ...
- Android架构组件——ViewModel
概述 ViewModel,从字面上理解的话,它肯定是跟视图(View)以及数据(Model)相关的.正像它字面意思一样,它是负责准备和管理和UI组件(Fragment/Activity)相关的数据类, ...
- python(For/while循环语句)
一.循环语句 1.while循环 当我们在python中需要重复执行一些动作的时候,这时我们就要用到循环 while循环的结构,当条件成立的时候,就会执行里面的代码 while循环不断的运行,直到指定 ...