mapreduce是hadoop生态中非常重要的一部分,顾名思义,主要分为两部分,map和reduce,他们各司其职,map的主要功能是用来对待处理的文档进行处理,主要是对数据进行按行读取,分割,然后根据用户需要进行不同的判断,清晰,直到得到目标的干净数据。reduce程序主要是对map传来的数据进行汇总,求和。最后经统计的结果输入到目标文件中。具体代码如下:

WCMapper.java

import java.io.IOException;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

//4个泛型,前两个是mapper输入数据的类型KENY是输入的key的类型,VALUIN是指的value的类型
//map和reduce的数据的输入输出都是以key-value的形式存在的
//默认情况下框架传递给我们的mapper框架输入数据,key是要处理文本的中一行的起始位置的偏移量,这一行的内容作为value
public class WCMapper extends Mapper {

//mapredure框架每度一行数据就会调用一次方法,递归调用
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

//具体业务逻辑写在这个方法中,而且我们要处理的数据已经被框架传递进来,在方法的key-value参数中
//key这一行数据的其实偏移量 value是这一行的内容

//将这一行的内容转换为String类型
String line = value.toString();
//将这一行内容进行分割
String[] words = StringUtils.split(line," ");
//遍历数组,以k-v的形式 k:单词 v:1
for(String word : words) {
context.write(new Text(word),new LongWritable(1));
}

}
}

WCReducer.java

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WCReducer extends Reducer{

//map的数据处理完成之后对,将所有的kv对缓存起来,进行分组,然后传递一个分组,调用一次reduce
//
@Override
protected void reduce(Text key, Iterable values,Context contest) throws IOException, InterruptedException {
long count = 0;
//遍历valueslist,进行累加求和
for(LongWritable value:values) {
count +=value.get();
}
//输出一个文件的统计结果
contest.write(key,new LongWritable(count));

}
}

WCRunner.java

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WCRunner {

//用来描述一个特定的job,比如改作业指定那个类是逻辑处理中的map,那个类是逻辑处理中发的reduce
//还可以指定改作业要处理的数据的所在的路径
//还可以指定作业完成后输出结果放到的哪个路径中
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();

Job job = Job.getInstance(conf);
//设置整个job所要用到的jar包的类所在的位置
job.setJarByClass(WCRunner.class);

//本job所使用的mapper和reduce
job.setMapperClass(WCMapper.class);
job.setReducerClass(WCReducer.class);

//指定reduce的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);

//指定map的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);

//指定元数据指定在哪里
//这里的文件路径既可以windows中的文件路径,也可以是hdfs中的路径,前提是可以互相通讯
FileInputFormat.setInputPaths(job,new Path("/home/hadoop/data-shixun/wordcount/srcdata.txt"));
FileOutputFormat.setOutputPath(job, new Path("/home/hadoop/data-shixun/wordcount/output"));
//将job提交给集群
job.waitForCompletion(true);
}
}

代码中相应部分都有详细的注释。

mapreduce入门程序之---wordcount的更多相关文章

  1. Hadoop基础-MapReduce入门篇之编写简单的Wordcount测试代码

    Hadoop基础-MapReduce入门篇之编写简单的Wordcount测试代码 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本文主要是记录一写我在学习MapReduce时的一些 ...

  2. MapReduce编程入门实例之WordCount:分别在Eclipse和Hadoop集群上运行

    上一篇博文如何在Eclipse下搭建Hadoop开发环境,今天给大家介绍一下如何分别分别在Eclipse和Hadoop集群上运行我们的MapReduce程序! 1. 在Eclipse环境下运行MapR ...

  3. 第02讲:Flink 入门程序 WordCount 和 SQL 实现

    我们右键运行时相当于在本地启动了一个单机版本.生产中都是集群环境,并且是高可用的,生产上提交任务需要用到flink run 命令,指定必要的参数. 本课时我们主要介绍 Flink 的入门程序以及 SQ ...

  4. 第1节 MapReduce入门:11、mapreduce程序的入门

    1.1.理解MapReduce思想 MapReduce思想在生活中处处可见.或多或少都曾接触过这种思想.MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景). ...

  5. map-reduce入门

    map-reduce入门 近期在改写mahout源代码,感觉自己map-reduce功力不够深厚,因此打算系统学习一下. map-reduce事实上是一种编程范式,从统计词频(wordCount)程序 ...

  6. 【Hadoop离线基础总结】MapReduce入门

    MapReduce入门 Mapreduce思想 概述 MapReduce的思想核心是分而治之,适用于大量复杂的任务处理场景(大规模数据处理场景). 最主要的特点就是把一个大的问题,划分成很多小的子问题 ...

  7. hadoop笔记之MapReduce的应用案例(WordCount单词计数)

    MapReduce的应用案例(WordCount单词计数) MapReduce的应用案例(WordCount单词计数) 1. WordCount单词计数 作用: 计算文件中出现每个单词的频数 输入结果 ...

  8. hadoop的第一个hello world程序(wordcount)

    在hadoop生态中,wordcount是hadoop世界的第一个hello world程序. wordcount程序是用于对文本中出现的词计数,从而得到词频,本例中的词以空格分隔. 关于mapper ...

  9. 大数据学习day32-----spark12-----1. sparkstreaming(1.1简介,1.2 sparkstreaming入门程序(统计单词个数,updateStageByKey的用法,1.3 SparkStreaming整合Kafka,1.4 SparkStreaming获取KafkaRDD的偏移量,并将偏移量写入kafka中)

    1. Spark Streaming 1.1 简介(来源:spark官网介绍) Spark Streaming是Spark Core API的扩展,其是支持可伸缩.高吞吐量.容错的实时数据流处理.Sp ...

随机推荐

  1. 什么是SAP Graph

    今年九月份刚刚过去的SAP TechEd Las Vegas会议上,SAP CTO Juergen Mueller向外界宣布了SAP一些持续进行的技术创新和改进,其中之一就是SAP Graph,大家可 ...

  2. ECharts 散点图+百度地图(案例转载)

    转载来源:https://efe.baidu.com/blog/echarts-map-tutorial-2/ ECharts 实现地图散点图(下)  小红  2016-06-13  ECharts, ...

  3. [极客-Linux] 05 系统调用

    分配内存的系统调用 1)brk  小内存 2)mmap  大内存 sigaction 注册信号处理函数 进程间通信: 1)消息队列,在内核中,msgget 创建 2)共享内存,shmget 内核源代码 ...

  4. SecureCRT中文乱码解决已设置UTF-8了

    参考网址:http://www.iitshare.com/securecrt-chinese-garbled-solution.html 问题描述 SecureCRT与SecureFX的常规选项里面已 ...

  5. Java 十大排序算法

    目录: 1.冒泡排序(Bubble Sort) 2.选择排序(Selection Sort) 3.插入排序(Insertion Sort) 4.希尔排序(Shell Sort) 5.归并排序(Merg ...

  6. mysql主从-ms

    一.环境准备 1.准备两台安装有mysql的linux服务器 2.安装的mysql版本最好相同 3.配置两台服务器的主机名和IP地址,主机名:master和slave,IP地址:192.168.0.2 ...

  7. China International Industry Fair 2019

    Today i visit the CIIF 2019, as a "professional visitor"  since i have made an appointment ...

  8. 第三天Beta冲刺

    团队作业Beta冲刺 项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 你们都是魔鬼吗 作业学习目标 (1)掌握软件黑盒测试技术:(2)学会编制软件 ...

  9. 【Python】编程小白的第一本python(最基本的魔法函数)

    Python官网中各个函数介绍的链接:https://docs.python.org/3/library/functions.html 几个常见的词: def (即 define,定义)的含义是创建函 ...

  10. HDFS中DataNode的心跳机制

    DataNode心跳机制的作用讲解了DataNode的三个作用: register:当DataNode启动的时候,DataNode需要将自身的一些信息(hostname, version等)告诉Nam ...