算法的时间复杂度O
一、时间复杂度
在进行算法分析时,语句总的执行次数 T(n) 是关于问题的规模n 的函数,进而分析 T(n) 随 n 的变化情况并确定 T(n) 的数量级,算法的时间复杂度,也就是算法的时间度量,记作:T(n) = O(f( ))。它表示随问题的规模 n 的增大,算法的执行时间的增长率 f(n) 的增长率相同,称作算法的渐近时间复杂度,简称为时间的复杂度,其中 f(n) 是问题规模n的某个函数。
这样用大写 [ O( ) ] 来体现算法时间复杂度的记法,我们就称之为大O记法。例如:O(n)、O(1)、O(n2)、O(log n) 等等。一般情况下,随着 n 的增大,T(n) 增长最慢的算法为最优算法。
二、推导大O阶的方法
1,用时间1取代运算时间中的所有加法常数。
2,在修改后的运行的函数中,只保留最高阶项。
3,如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。
例1:时间复杂度为O(1)常数阶的算法
int sum = 0, n = 100; /* 执行一次 */
sum = (1+n) *n/2; /* 执行一次 */
printf("the sum is:%d",sum); /* 执行一次 */
我们可以看出运行次数的函数是 f(n) = 3。根据我们上面的大O阶公式 1 可以得到,把常数项 3 改为 1,在保留最高阶时发现没有最高阶项,所以时间复杂度为大 O(1)。也就是说,无论算法是 3 次还是 30 次,哪怕是 300 次,这些只要是常数项,它的时间复杂度都为大 O(1),而不是O(3)、O(30)、O(300)。即我们称之为常数阶。
例2:时间复杂度为O(n)线性阶的算法
for(int i = 0; i < n; i++) {
sum += i;
}
从上面的这段代码我们可以看出,它的时间复杂度为O(n),因为循环体中的代码需要执行n次。
例3:时间复杂度为O(n2)平方阶的算法
1 for(int i = 0; i < n; i++) {
2 for(int j = i; j < n; j++) {
3 //时间复杂度为O(n2)
4 }
5 }
分析:
当 i = 0时,内循环执行了 n 次,
当 i = 1时,内循环执行了 n-1 次,
......
当 i = n-1时。执行了 1 次,
所以总的执行次数为:n = (n-1)+(n-2)+ ··· + 1= n(n+1)/2 = n2/2+n/2。
由上面的公式可得:第一条代码中没有加法常数项,不考虑;第二条只保留最高阶项,因此保留 n2/2;第三条去除这个项相乘的常数,所以去除了 1/2;最终我们得到的代码段时间复杂度就是 O(n2)。
例4:时间复杂度为O(log n)对数阶的算法
int count = 1;
while (count < n) {
count *= 2;
}
上面代码我们可以看出,count = count * 2 之后就距离 n 更近一步,也就是说,有多少个 2 相乘后大于 n,就退出循环。所以我们可以由 2x = n 推导出 x = log2n ,像这样的循环时间复杂度,我们就称为对数阶的复杂度即为 O(log n)。
三、O阶算法效率排序
数据结构中我们一般常用的时间复杂度表示有:O(1)、O(n)、O(n2)、O(log n)、O(nlog n)、O(n3)、O(2n)。
按时间复杂度所耗费的时间从大到小排序依次为:
O(1) < O(log n) < O(n) < O(nlog n) < O(n2) < O(n3) < O(2n)
算法的时间复杂度O的更多相关文章
- C#中常用的排序算法的时间复杂度和空间复杂度
常用的排序算法的时间复杂度和空间复杂度 常用的排序算法的时间复杂度和空间复杂度 排序法 最差时间分析 平均时间复杂度 稳定度 空间复杂度 冒泡排序 O(n2) O(n2) 稳定 O(1) 快速排序 ...
- 算法的时间复杂度(大O表示法)
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”. 当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性 ...
- 深入浅出数据结构C语言版(2)——简要讨论算法的时间复杂度
所谓算法的"时间复杂度",你可以将其理解为算法"要花费的时间量".比如说,让你用抹布(看成算法吧--)将家里完完全全打扫一遍大概要5个小时,那么你用抹布打扫家里 ...
- php算法基础----时间复杂度和空间复杂度
算法复杂度分为时间复杂度和空间复杂度. 其作用: 时间复杂度是指执行算法所需要的计算工作量: 而空间复杂度是指执行这个算法所需要的内存空间. (算法的复杂性体现在运行该算法时的计算机所需资源的多少上, ...
- 关于算法的时间复杂度O(f(n))
(一)算法时间复杂度定义: 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级.算法的时间复杂度,也就是算法的时间量度,记作:T(n ...
- KMP算法的时间复杂度与next数组分析
一.什么是 KMP 算法 KMP 算法是一种改进的字符串匹配算法,用于判断一个字符串是否是另一个字符串的子串 二.KMP 算法的时间复杂度 O(m+n) 三.Next 数组 - KMP 算法的核心 K ...
- 算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)
在描述算法复杂度时,经常用到 o(1), o(n), o(logn), o(nlogn) 来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义:这是算法的时空复杂度的表示.不仅仅用于表示时间复 ...
- 算法的时间复杂度 & 性能对比
算法的时间复杂度 & 性能对比 累加算法性能对比 // js 累加算法性能对比测试 const n = 10**6; (() => { console.time(`for`); let ...
- 常见算法的时间复杂度(大O计数法)
定义 对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作(即花费多少时间单位)在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率. 对于算法 ...
随机推荐
- mac 下enable mysql的load data in file
1)使用root用户登录mysql 2)将 local_infile 变量设置为true SET GLOBAL local_infile = true; 3)重启数据库 在系统偏好设置中找到MySql ...
- Kali下进行局域网断网攻击
今天我就来演示一下在kali下的局域网断网攻击,即ARP地址欺骗,下图所要用到的arp地址欺骗状态图: 则: 第一步:假设主机A访问某网站,那么要告知某网站我的IP和MAC地址,但这是以广播的方式告知 ...
- 十大排序代码实现(python)
目录 冒泡排序 快速排序 简单插入排序 希尔排序 简单选择排序 堆排序 二路归并排序 多路归并排序 计数排序 桶排序 基数排序 写在前面: 参考文章:十大经典排序算法 本文的逻辑顺序基于从第一篇参考博 ...
- Immediate Decodability UVA-644(qsort排序 + 模拟)
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> us ...
- 《hello-world》第九次团队作业:【Beta】Scrum meeting 2
项目 内容 这个作业属于哪个课程 2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验十三 团队作业9:Beta冲刺与团队项目验收 团队名称 <hello--wor ...
- test20190803 夏令营NOIP训练19
60+100+0=160 贪婪大陆 面对蚂蚁们的疯狂进攻,小FF的Tower defence宣告失败--人类被蚂蚁们逼到了Greed Island上的一个海湾.现在,小FF的后方是一望无际的大海, 前 ...
- DevExpress21:SplashScreenManager控件实现启动闪屏和等待信息窗口
DevExpress中SplashScreenManager这个控件的主要作用就是显示程序集加载之前的进度条显示和进行耗时操作时候的等待界面. 一.SplashScreenManager控件的使用 1 ...
- ORM框架三种映射在Springboot上的使用
ORM(对象/关系映射)是数据库层非常重要的一部分,有三种常用的映射关系 1.多对一 tbl_clazz clazz{ id name description grade_id charge_id } ...
- python - 使用psutils
oshelper.py #encoding=utf-8 import psutil import datetime #查看cpu的信息 print u"CPU 个数 %s"%psu ...
- 【洛谷2791】 幼儿园篮球题 第二类斯特林数+NTT
求 \(\sum_{i=0}^{k}\binom{m}{i}\binom{n-m}{k-i}i^L\) \((1\leqslant n,m\leqslant 2\times 10^7,1\leqsla ...