算法的时间复杂度O
一、时间复杂度
在进行算法分析时,语句总的执行次数 T(n) 是关于问题的规模n 的函数,进而分析 T(n) 随 n 的变化情况并确定 T(n) 的数量级,算法的时间复杂度,也就是算法的时间度量,记作:T(n) = O(f( ))。它表示随问题的规模 n 的增大,算法的执行时间的增长率 f(n) 的增长率相同,称作算法的渐近时间复杂度,简称为时间的复杂度,其中 f(n) 是问题规模n的某个函数。
这样用大写 [ O( ) ] 来体现算法时间复杂度的记法,我们就称之为大O记法。例如:O(n)、O(1)、O(n2)、O(log n) 等等。一般情况下,随着 n 的增大,T(n) 增长最慢的算法为最优算法。
二、推导大O阶的方法
1,用时间1取代运算时间中的所有加法常数。
2,在修改后的运行的函数中,只保留最高阶项。
3,如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。
例1:时间复杂度为O(1)常数阶的算法
int sum = 0, n = 100; /* 执行一次 */
sum = (1+n) *n/2; /* 执行一次 */
printf("the sum is:%d",sum); /* 执行一次 */
我们可以看出运行次数的函数是 f(n) = 3。根据我们上面的大O阶公式 1 可以得到,把常数项 3 改为 1,在保留最高阶时发现没有最高阶项,所以时间复杂度为大 O(1)。也就是说,无论算法是 3 次还是 30 次,哪怕是 300 次,这些只要是常数项,它的时间复杂度都为大 O(1),而不是O(3)、O(30)、O(300)。即我们称之为常数阶。
例2:时间复杂度为O(n)线性阶的算法
for(int i = 0; i < n; i++) {
sum += i;
}
从上面的这段代码我们可以看出,它的时间复杂度为O(n),因为循环体中的代码需要执行n次。
例3:时间复杂度为O(n2)平方阶的算法
1 for(int i = 0; i < n; i++) {
2 for(int j = i; j < n; j++) {
3 //时间复杂度为O(n2)
4 }
5 }
分析:
当 i = 0时,内循环执行了 n 次,
当 i = 1时,内循环执行了 n-1 次,
......
当 i = n-1时。执行了 1 次,
所以总的执行次数为:n = (n-1)+(n-2)+ ··· + 1= n(n+1)/2 = n2/2+n/2。
由上面的公式可得:第一条代码中没有加法常数项,不考虑;第二条只保留最高阶项,因此保留 n2/2;第三条去除这个项相乘的常数,所以去除了 1/2;最终我们得到的代码段时间复杂度就是 O(n2)。
例4:时间复杂度为O(log n)对数阶的算法
int count = 1;
while (count < n) {
count *= 2;
}
上面代码我们可以看出,count = count * 2 之后就距离 n 更近一步,也就是说,有多少个 2 相乘后大于 n,就退出循环。所以我们可以由 2x = n 推导出 x = log2n ,像这样的循环时间复杂度,我们就称为对数阶的复杂度即为 O(log n)。
三、O阶算法效率排序
数据结构中我们一般常用的时间复杂度表示有:O(1)、O(n)、O(n2)、O(log n)、O(nlog n)、O(n3)、O(2n)。
按时间复杂度所耗费的时间从大到小排序依次为:
O(1) < O(log n) < O(n) < O(nlog n) < O(n2) < O(n3) < O(2n)
算法的时间复杂度O的更多相关文章
- C#中常用的排序算法的时间复杂度和空间复杂度
常用的排序算法的时间复杂度和空间复杂度 常用的排序算法的时间复杂度和空间复杂度 排序法 最差时间分析 平均时间复杂度 稳定度 空间复杂度 冒泡排序 O(n2) O(n2) 稳定 O(1) 快速排序 ...
- 算法的时间复杂度(大O表示法)
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”. 当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性 ...
- 深入浅出数据结构C语言版(2)——简要讨论算法的时间复杂度
所谓算法的"时间复杂度",你可以将其理解为算法"要花费的时间量".比如说,让你用抹布(看成算法吧--)将家里完完全全打扫一遍大概要5个小时,那么你用抹布打扫家里 ...
- php算法基础----时间复杂度和空间复杂度
算法复杂度分为时间复杂度和空间复杂度. 其作用: 时间复杂度是指执行算法所需要的计算工作量: 而空间复杂度是指执行这个算法所需要的内存空间. (算法的复杂性体现在运行该算法时的计算机所需资源的多少上, ...
- 关于算法的时间复杂度O(f(n))
(一)算法时间复杂度定义: 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级.算法的时间复杂度,也就是算法的时间量度,记作:T(n ...
- KMP算法的时间复杂度与next数组分析
一.什么是 KMP 算法 KMP 算法是一种改进的字符串匹配算法,用于判断一个字符串是否是另一个字符串的子串 二.KMP 算法的时间复杂度 O(m+n) 三.Next 数组 - KMP 算法的核心 K ...
- 算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)
在描述算法复杂度时,经常用到 o(1), o(n), o(logn), o(nlogn) 来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义:这是算法的时空复杂度的表示.不仅仅用于表示时间复 ...
- 算法的时间复杂度 & 性能对比
算法的时间复杂度 & 性能对比 累加算法性能对比 // js 累加算法性能对比测试 const n = 10**6; (() => { console.time(`for`); let ...
- 常见算法的时间复杂度(大O计数法)
定义 对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作(即花费多少时间单位)在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率. 对于算法 ...
随机推荐
- 使用maven导入module时,报java.security.InvalidAlgorithmParameterException: the trustAnchors parameter must be non-empty
在新装IDEA导入Flink源码时出现一些问题,在此记录,希望能帮到大伙! 一.环境 IDEA2019.1.2(破解版):OpenJDK 1.8.0_40:Maven 3.5.3/3.2.5/3.6. ...
- css定位基础知识
标题:css定位 地址:https://www.w3school.com.cn/css/css_positioning.asp
- python3 生成二维码并存入word文档
#二维码的制作与解析 import qrcode,zxing,os s='https:////www.baidu.com/' res=qrcode.make(data=s) res.show() re ...
- 03 c++中this指针
概念: 成员函数:在类中定义的函数.普通函数无法被继承,成员函数可以被继承.友元函数相当于普通函数. 友元函数不是类的组成,没有this指针,必须将成员函数操作符作为参数传递对象. 在c++中成员函数 ...
- dt二次开发之-地区链接伪静态标签用法
用法:开启伪静态功能,参照前台,看看哪里有按照地区浏览,然后打开对应的模块和模板,修改 <a href="{$MOD[linkurl]}search.php?areaid={$v[ar ...
- SVM: 直观上理解大间距分类器
在SVM中,增加安全的间距因子 那么增加了这个间距因子后,会出现什么样的结果呢,我们将C设置为很大(C=100000) SVM决策边界 当我们将C设置得很大进,要想SVM的cost function最 ...
- *.net框架 - IEnumerable类 & IQueryable类
什么使用IQueryable<T> 查询返回类型为什么用IQueryable<T>,而不用 IEnumerable<T>类型? IQueryable接口实现IEnu ...
- eclipse 安装反编译工具
jd-gui是我最喜欢使用的java反编译工具.它是一款用c++开发的轻量级的java反编译工具,无须安装即可以使用,你甚至都不需要安装jre环境就可以实现反编译:支持最新的jdk,目前是jdk 1. ...
- http之browser抓包
Chrome 抓包 详解谷歌Network 面板 快捷键:Control+Shift+I (Windows) or Command+Option+I (Mac) 控制器 补充知识: HAR Chrom ...
- jQuery弹出提示信息自动消失简洁版
// 在bootstrap中可以,可以使用如下方式实现弹出提示信息自动消失,如果没有使用bootstrap框架,可以自定义样式 //tip是提示信息,type:'success'是成功信息,'dang ...