Mongodb索引实战
最近碰到这样的一个需求,一张酒店政策优惠表,我们要根据用户入住和离开的时间,计算一家酒店的最低价政策前10位,数据库表字段如下:
'hid':88, 酒店id
'date':20150530, 入住日期整形(不要纠结unix时间戳)
'enable':1, 政策是否启用
'price':100, 政策价格
'name':'abc', 政策名称
'position':'china', 酒店位置
'writeTime':datetime.datetime.now(), 写入时间
我们的查询语句也相对固定,都是这样的:
db.getCollection('hotels').find({"hid":88, "date":{"$gte":20150501, "$lte":20150510}, "enable":1}).sort({"price":1}).limit(10)
其中条件分为3个: 1、酒店 id :“hid”:88 2、date在某个区间里 3、enable启用为1,表示启用 排序条件是一个: 1、price正序排序
现在我往数据库插入10万条测试数据,插入脚本如下:
# -*- coding: utf-8 -*-
import pymongo
import json
import datetime,time
import sys
import copy
import sys, os
from multiprocessing import Process, Value, Array
from hashlib import md5
from random import choice, randint
def getTimestampFromDatetime(d=None):
if d is None:
d = datetime.datetime.now()
return time.mktime(d.timetuple())
def md5Hash(str):
m = md5()
m.update(str)
return m.hexdigest().upper()
def task():
#10分之一的概率无法使用
enableList = [1,1,1,1,1,1,1,1,1,0]
dateList = []
for i in range(31):
dateInt = 20150501
dateList.append(dateInt+i)
mongoUri = 'mongodb://10.14.40.62:27017/hotel'
all_data = {
'hid':0,
'date':0,
'enable':0,
'price':0,
'name':'abc',
'position':'china',
'writeTime':datetime.datetime.now(),
}
tableName = 'hotels'
client = pymongo.MongoClient(mongoUri, max_pool_size=100)
db = client.hotel
listData = []
for i in range(100000):
all_data['price'] = randint(100, 10000)
all_data['enable'] = choice(enableList)
all_data['date'] = choice(dateList)
all_data['hid'] = randint(1, 100)
listData.append(copy.copy(all_data))
db[tableName].insert(listData)
if __name__ == '__main__':
start = getTimestampFromDatetime()
task()
end = getTimestampFromDatetime()
print('time: {0}s'.format(end-start))
一、不建任何索引查询: 我们执行如下语句,查看语句执行情况:
db.getCollection('hotels').find({"hid":88, "date":{"$gte":20150501, "$lte":20150510}, "enable":1}).sort({"price":1}).limit(10).explain()
我们看到结果:
"n" : 10,
"nscannedObjects" : 100000,
"nscanned" : 100000,
...
"scanAndOrder" : true,
...
"millis" : 200,
其中 n 表示最终返回的结果,nscannedObjects表示我们扫描了多少数据,scanAndOrder表示我们进行了扫描并排序的操作,这是非常消耗cpu和内存的。
从结果来看,我们对10万条数据进行了全表扫描,最终得出10条结果出来。显然这个方案我们不能接受,时间我们花费了200毫秒,这个速度如果上线应用,肯定是不行的。
二、对hid加上索引 我们很容易就想到,对hid加上索引,这样我们第一个结果hid的搜索就可以快速将酒店的索引返回缩小,于是我们创建酒店 hid 的索引,然后同样执行上述语句。 索引如下:
{
"hid" : 1
}
结果如下:
"n" : 10,
"nscannedObjects" : 1024,
"nscanned" : 1024,
...
"scanAndOrder" : true,
...
"millis" : 58ms,
对比上述的结果,我们把200ms的查询通过hid索引一下优化到了58ms,从扫描全表10万条数据,修改为只扫描了1024条数据,同时我们的响应时间也下降到了58ms,我们是否可以再优化一下呢?
三、建立hid和date的联合索引 我们发现查询还有第二个参数,date作为时间范围的,所以我们建立一个联合索引,hid:1, date:1这是否可以更加快一些?索引如下:
{
"hid" : 1,
"date" : 1
}
结果如下:
"n" : 10,
"nscannedObjects" : 326,
"nscanned" : 326,
...
"scanAndOrder" : true,
...
"millis" : 6ms,
经过再次优化,这个查询一下就变成6ms返回,只扫描了326行数据了。但是我们只需要返回10条数据,扫描了300多行数据,是否可以再进行一次优化?
四、建立hid、date、enable的联合索引 我们发现查询条件还有第三个参数 enable,由于enable大约有10分之一的数据是我们不要的,就是未启用的政策,所以我们把enable字段也加到索引中,索引如下:
{
"hid" : 1,
"date" : 1,
"enable" : 1
}
执行结果如下:
"n" : 10,
"nscannedObjects" : 291,
"nscanned" : 300,
...
"scanAndOrder" : true,
...
"millis" : 5ms,
这里nscanned和nscannedObjects不同,nscanned:300表示从数据库索引条目中搜索了300条数据,nscannedObjects表示在这300条中,出最终的10条记录,扫描了这300条中的291条。
根据上面的结果,我们通过索引又进一步优化了这个查询,但是还不满足,我是否可以再增加sort排序的索引来优化呢?
五、建立hid,date,enable,price联合索引 我们把排序的索引也加到联合索引中,看看还能否再进一步优化这个查询了,建立索引如下:
{
"hid" : 1,
"date" : 1,
"enable" : 1,
"price" : 1
}
同样的执行语句结果如下:
"n" : 10,
"nscannedObjects" : 291,
"nscanned" : 300,
...
"scanAndOrder" : true,
...
"millis" : 5ms,
我们发现,无论是 nscannedObjects 还是 nscanned,以及查询时间都没有任何帮助了,和之前一样了,似乎我们的优化已经完成了。
六、建立逆索引试试 因为我们的查询条件有一个date作为区间查询的,而最终我们要得到的是根据price排序的结果,所以我们这样建立索引,看看是否对我们的查询有所帮助:
{
"hid" : 1,
"price" : 1,
"date" : 1,
"enable" : 1
}
执行结果如下:
"n" : 10,
"nscannedObjects" : 10,
"nscanned" : 37,
...
"scanAndOrder" : false,
...
"millis" : 0ms,
看到结果令人满意,我们把成功的把一个原来200ms的查询优化到0ms了,我们从索引查找到37条记录保存在内存里,同时我们只扫描了其中的10条记录就把结果返回了。同时 scanAndOrder 这个字段也成为了false,表示我们没有做在内存里的扫描和排序操作,将会降低cpu和内存的消耗,我们的优化已经完成了。
不过需要指出一点,如果从写入性能来讲,可以考虑把 “enable” : 1 从索引中拿走,毕竟这个索引并不能很好的帮助我们大量减少筛选的数据。
总结一下: 对于这种查询条件有 $in, $gte 等的区间操作的,并且带有sort排序的查询,合理的索引的建立,如果有条件优化到 scanAndOrder 结果为false,将大大的提升我们的数据库性能和响应时间。
Mongodb索引实战的更多相关文章
- 深入浅出MongoDB应用实战开发
写在前面的话: 这篇文章会有点长,谨此记录自己昨天一整天看完<深入浅出MongoDB应用实战开发>视频时的笔记.只是在开始,得先抛出一个困扰自己很长时间的问题:“带双引号的和不带双引号的j ...
- [DataBase] MongoDB (7) MongoDB 索引
MongoDB 索引 1. 建立索引 唯一索引db.passport.ensureIndex( {"loginname": 1}, {"unique": tru ...
- MongoDB索引介绍
MongoDB中的索引其实类似于关系型数据库,都是为了提高查询和排序的效率的,并且实现原理也基本一致.由于集合中的键(字段)可以是普通数据类型,也可以是子文档.MongoDB可以在各种类型的键上创建索 ...
- MongoDB(索引及C#如何操作MongoDB)(转载)
MongoDB(索引及C如何操作MongoDB) 索引总概况 db.test.ensureIndex({"username":1})//创建索引 db.test.ensureInd ...
- MongoDB索引(一)
原文地址 一.介绍 我们已经很清楚索引会提高查询效率.如果没有索引,MongoDB必须对全部集合进行扫描,即,扫描集合中每条文档以选择那些符合查询条件的文档.对查询来说如果存在合适的索引,则Mongo ...
- MySQL索引实战经验总结
MySQL索引对数据检索的性能至关重要,盲目的增加索引不仅不能带来性能的提升,反而会消耗更多的额外资源,本篇总结了一些MySQL索引实战经验. 索引是用于快速查找记录的一种数据结构.索引就像是数据库中 ...
- MongoDB 索引篇
MongoDB 索引篇 索引的简介 索引可以加快查询的速度,但是过多的索引或者规范不好的索引也会影响到查询的速度.且添加索引之后的对文档的删除,修改会比以前速度慢.因为在进行修改的时候会对索引进行更新 ...
- MongoDB索引的种类与使用
一:索引的种类 1:_id索引:是绝大多数集合默认建立的索引,对于每个插入的数据,MongoDB都会自动生成一条唯一的_id字段2:单键索引: 1.单键索引是最普通的索引 2.与_id索引不同,单键索 ...
- MongoDB索引,性能分析
索引的限制: 索引名称不能超过128个字符 每个集合不能超过64个索引 复合索引不能超过31列 MongoDB 索引语法 db.collection.createIndex({ <field&g ...
随机推荐
- Pytest权威教程09-捕获标准输出及标准错误输出
目录 捕获标准输出及标准错误输出 默认 stdout/stderr/stdin 捕获行为 设置捕获方法或禁用捕获 调试中使用print语句 在测试用例中使用的捕获的输出 返回: Pytest权威教程 ...
- shell 一次性杀掉相同名称的进程
这条命令将会杀掉所有含有关键字"LOCAL=NO"的进程 ps -ef|grep LOCAL=NO|grep -v grep|cut -c -|xargs kill - 另一种方法 ...
- phpstorm 2019.1 修改浏览器
如图,修改如下浏览器的位置,由于我安装了虚拟机,导致每次点击谷歌浏览器后,都是打开的虚拟机里面的谷歌浏览器,需要重新设置浏览器的位置 打开设置 打开浏览器设置界面 双击可以选择浏览器的路径,然后就可以 ...
- localstorage 必知必会
做项目中发现localstorage在不同的域名下是不能相互访问的,于是找到了以下这篇文章,对localStorage做一个深入的了解 HTML API localstorage在浏览器的API有两个 ...
- 下载GO的开源开发工具LITEIDE
下载GO的开源开发工具LITEIDE LITEIDE是免费且开源的GO IDE,支持WINDOWS, LINUX, MACOS https://sourceforge.net/projects/lit ...
- 使用idea创建第一个springboot项目
版权声明:版权归作者所有,转载请注明出处. https://blog.csdn.net/qq_34205356/article/details/81098354 前言:如今springboot越来越火 ...
- kotlin中val和var的区别
var: var是一个可变变量,这是一个可以通过重新分配来更改为另一个值的变量.这种声明变量的方式和Java中声明变量的方式一样.val: val是一个只读变量,这种声明变量的方式相当于java中的f ...
- [转]浅谈HTTP中GET、POST用法以及它们的区别
HTTP定义了与服务器交互的不同方法,最基本的方法有4种,分别是GET,POST,PUT,DELETE.URL全称是资源描述符.我们可以这样认为: 一个URL地址,它用于描述一个网络上的资源,而HTT ...
- ubuntu挂载新硬盘
root@luo-All-Series:~# fdisk -lDisk /dev/loop0: 320.2 MiB, 335728640 bytes, 655720 sectorsUnits: sec ...
- 0.9.0.RELEASE版本的spring cloud alibaba sentinel+gateway网关实例
sentinel除了让服务提供方.消费方用之外,网关也能用它来限流.我们基于上次整的网关(参见0.9.0.RELEASE版本的spring cloud alibaba nacos+gateway网关实 ...