1101 Quick Sort (25 分)
 

There is a classical process named partition in the famous quick sort algorithm. In this process we typically choose one element as the pivot. Then the elements less than the pivot are moved to its left and those larger than the pivot to its right. Given N distinct positive integers after a run of partition, could you tell how many elements could be the selected pivot for this partition?

For example, given N=5 and the numbers 1, 3, 2, 4, and 5. We have:

  • 1 could be the pivot since there is no element to its left and all the elements to its right are larger than it;
  • 3 must not be the pivot since although all the elements to its left are smaller, the number 2 to its right is less than it as well;
  • 2 must not be the pivot since although all the elements to its right are larger, the number 3 to its left is larger than it as well;
  • and for the similar reason, 4 and 5 could also be the pivot.

Hence in total there are 3 pivot candidates.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤). Then the next line contains N distinct positive integers no larger than 1. The numbers in a line are separated by spaces.

Output Specification:

For each test case, output in the first line the number of pivot candidates. Then in the next line print these candidates in increasing order. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.

Sample Input:

5
1 3 2 4 5

Sample Output:

3
1 4 5
#include <bits/stdc++.h>
using namespace std;
#define N 100010
int a[N],n;
int vis[N];
vector<int>ve;
//有多少个数它左边比它小,右边比它大
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i =;i<=n;i++) vis[i] = ;
int maxx = a[];
//因为是N个不同的数,那么从左到右应该是递增
//只要不满足这个条件,就一定不是,逆序时同理
for(int i =;i<=n;i++){
if(a[i]<maxx) vis[i] = ;
else{
maxx = a[i];
}
}
int minn =a[n];
for(int i=n;i>=;i-- ){
if(a[i]>minn) vis[i] = ;
else {
minn =a[i];
}
}
int cnt = ;
for(int i =;i<=n;i++){
if(vis[i]==)
{
cnt++;
ve.push_back(a[i]) ;
}
}
if(cnt==) printf("0\n\n");
else{
printf("%d\n",cnt);
sort(ve.begin(),ve.end());
for(int i =;i<ve.size();i++){
if(i==) printf("%d",ve[i]);
else{
printf(" %d",ve[i]);
}
}
}
return ;
}
 

快排 PAT 1101的更多相关文章

  1. F#之旅4 - 小实践之快排

    参考文章:https://swlaschin.gitbooks.io/fsharpforfunandprofit/content/posts/fvsc-quicksort.html F#之旅4 - 小 ...

  2. 快排 快速排序 qsort quicksort C语言

    现在网上搜到的快排和我以前打的不太一样,感觉有点复杂,我用的快排是FreePascal里/demo/text/qsort.pp的风格,感觉特别简洁. #include<stdio.h> # ...

  3. iOS常见算法(二分法 冒泡 选择 快排)

    二分法: 平均时间复杂度:O(log2n) int halfFuntion(int a[], int length, int number)  { int start = 0; int end = l ...

  4. C++ 快排

    // 进行一轮快排并返回当前的中间数 int getMiddle( int* arr, int low, int high ) { auto swaparr = [&]( int i, int ...

  5. 先贴上代码:Random快排,快排的非递归实现

    设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为主元,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序.值得注意的是, ...

  6. Java常见的几种排序算法-插入、选择、冒泡、快排、堆排等

    本文就是介绍一些常见的排序算法.排序是一个非常常见的应用场景,很多时候,我们需要根据自己需要排序的数据类型,来自定义排序算法,但是,在这里,我们只介绍这些基础排序算法,包括:插入排序.选择排序.冒泡排 ...

  7. ACM/ICPC 之 快排+归并排序-记录顺序对(TSH OJ-LightHouse(灯塔))

    TsingHua OJ 上不能使用<algorithm>头文件,因此需要手写快排(刚开始写的时候自己就出了很多问题....),另外本题需要在给横坐标排序后,需要记录纵坐标的顺序对的数量,因 ...

  8. 数组第K小数问题 及其对于 快排和堆排 的相关优化比较

    题目描述 给定一个整数数组a[0,...,n-1],求数组中第k小数 输入描述 首先输入数组长度n和k,其中1<=n<=5000, 1<=k<=n 然后输出n个整形元素,每个数 ...

  9. 结构体快排回顾(sort)

    一般来说,我做竞赛的时候排序一般用快排 很快很方便 普通sort(从小到大) sort(a,a+n); 直接贴一段代码吧,包含了vector,sort,结构体等简单东西综合 #include < ...

随机推荐

  1. 集合排序、map、枚举

    private void sortList(List<AssessmentQuestionnaireRecord> list){ Collections.sort(list, new Co ...

  2. docker 清理无用的卷

    docker  system prune 对于卷的清理不够彻底 题外话:docker volume ls查看当前卷列表 使用如下命令可以清理不用的卷 docker volume prune -f 强制 ...

  3. luogu_2605: 基站选址

    洛谷2605:基站选址 题意描述: 有\(N\)个村庄在一条直线上,第\(i(i>1)\)个村庄的距离第\(1\)个村庄的距离为\(D_i\). 需要在这些村庄中建立不超过\(K\)个通讯站,在 ...

  4. mknod

  5. json-server模拟服务器API

    一.npm安装 npm install --global json-server 二.使用:创建一个json数据文件,比如: { "students": [{ "id&q ...

  6. RookeyFrame 一些心得 或者 调试技巧等

    因为没有依赖具体的实现层,类库的输出路径又没有设置在web层的bin目录,所以每次都要拷贝实现层的DLL过去,有时候拷贝过去了还是没有反应,估计是缓存什么的吧, 解决:先那几个web层bin目录的 D ...

  7. Spring Could Feign 设计原理

    什么是Feign? Feign 的英文表意为"假装,伪装,变形", 是一个http请求调用的轻量级框架,可以以Java接口注解的方式调用Http请求,而不用像Java中通过封装HT ...

  8. bzoj3073: [Pa2011]Journeys 线段树优化建图

    bzoj3073: [Pa2011]Journeys 链接 BZOJ 思路 区间和区间连边.如何线段树优化建图. 和单点连区间类似的,我们新建一个点,区间->新点->区间. 又转化成了单点 ...

  9. CF732D Exams 题解

    CF732D Exams 题目描述 Vasiliy has an exam period which will continue for \(n\) days. He has to pass exam ...

  10. 洛谷P1979华容道

    题目 此题目中存在三种棋盘的放置方法(空白,不能活动,能活动). 而每次变化的格子一定在当前空白格子的周围,因此只需要对空白格子的周围四个状态考虑即可,因此我们设\(a[i][j][k]\)为白格子在 ...