Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
  Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
  Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
  engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

给定一个元素代表某股票每天价格的数组,最多可以买卖股票2次,还是不能同时有多个交易,买之前要卖出,求最大利润。

两次买卖在时间跨度上不能有重叠(当然第一次的卖出时间和第二次的买入时间可以是同一天)。既然不能有重叠可以将整个序列以任意坐标i为分割点,分割成两部分:

prices[0:n-1] => prices[0:i] + prices[i:n-1],对于这个分割来说,最大收益为两段的最大收益之和。每一段的最大收益用I的解法来做。最大收益是对所有0<=i<=n-1的分割的最大收益取一个最大值。

1. 计算A[0:i]的收益最大值:用minPrice记录i左边的最低价格,用maxLeftProfit记录左侧最大收益
2. 计算A[i:n-1]的收益最大值:用maxPrices记录i右边的最高价格,用maxRightProfit记录右侧最大收益。
3. 最后这两个收益之和便是以i为分割的最大收益。将序列从左向右扫一遍可以获取dp1,从右向左扫一遍可以获取dp2。相加后取最大值即为答案。

时间复杂度O(n), 空间复杂度O(n)

Java:Divide and conquer

public class Solution {
public int maxProfit(int[] prices) {
// find maxProfit for {0, j}, find maxProfit for {j + 1, n - 1}
// find max for {max{0, j}, max{j + 1, n - 1}} if (prices == null || prices.length == 0) {
return 0;
} int maximumProfit = 0;
int n = prices.length; ArrayList<Profit> preMaxProfit = new ArrayList<Profit>(n);
ArrayList<Profit> postMaxProfit = new ArrayList<Profit>(n);
for (int i = 0; i < n; i++) {
preMaxProfit.add(maxProfitHelper(prices, 0, i));
postMaxProfit.add(maxProfitHelper(prices, i + 1, n - 1));
}
for (int i = 0; i < n; i++) {
int profit = preMaxProfit.get(i).maxProfit + postMaxProfit.get(i).maxProfit;
maximumProfit = Math.max(profit, maximumProfit);
}
return maximumProfit;
} private Profit maxProfitHelper(int[] prices, int startIndex, int endIndex) {
int minPrice = Integer.MAX_VALUE;
int maxProfit = 0;
for (int i = startIndex; i <= endIndex; i++) {
if (prices[i] < minPrice) {
minPrice = prices[i];
}
if (prices[i] - minPrice > maxProfit) {
maxProfit = prices[i] - minPrice;
}
}
return new Profit(maxProfit, minPrice);
} public static void main(String[] args) {
int[] prices = new int[]{4,4,6,1,1,4,2,5};
Solution s = new Solution();
System.out.println(s.maxProfit(prices));
}
}; class Profit {
int maxProfit, minPrice;
Profit(int maxProfit, int minPrice) {
this.maxProfit = maxProfit;
this.minPrice = minPrice;
}
}

Java:DP

public class Solution {
public int maxProfit(int[] prices) {
if (prices == null || prices.length <= 1) {
return 0;
} int[] left = new int[prices.length];
int[] right = new int[prices.length]; // DP from left to right;
left[0] = 0;
int min = prices[0];
for (int i = 1; i < prices.length; i++) {
min = Math.min(prices[i], min);
left[i] = Math.max(left[i - 1], prices[i] - min);
} //DP from right to left;
right[prices.length - 1] = 0;
int max = prices[prices.length - 1];
for (int i = prices.length - 2; i >= 0; i--) {
max = Math.max(prices[i], max);
right[i] = Math.max(right[i + 1], max - prices[i]);
} int profit = 0;
for (int i = 0; i < prices.length; i++){
profit = Math.max(left[i] + right[i], profit);
} return profit;
}
}

Python:T:O(n), S: O(n)

class Solution3:
def maxProfit(self, prices):
min_price, max_profit_from_left, max_profits_from_left = float("inf"), 0, []
for price in prices:
min_price = min(min_price, price)
max_profit_from_left = max(max_profit_from_left, price - min_price)
max_profits_from_left.append(max_profit_from_left) max_price, max_profit_from_right, max_profits_from_right = 0, 0, []
for i in reversed(range(len(prices))):
max_price = max(max_price, prices[i])
max_profit_from_right = max(max_profit_from_right, max_price - prices[i])
max_profits_from_right.insert(0, max_profit_from_right) max_profit = 0
for i in range(len(prices)):
max_profit = max(max_profit, max_profits_from_left[i] + max_profits_from_right[i]) return max_profit

Python:

class Solution:
def maxProfit(self, prices):
hold1, hold2 = float("-inf"), float("-inf")
release1, release2 = 0, 0
for i in prices:
release2 = max(release2, hold2 + i)
hold2 = max(hold2, release1 - i)
release1 = max(release1, hold1 + i)
hold1 = max(hold1, -i);
return release2  

C++:DP

class Solution {
public:
int maxProfit(vector<int> &prices) {
if(prices.empty()) return 0;
int n = prices.size();
vector<int> leftProfit(n,0); int maxLeftProfit = 0, minPrice = prices[0];
for(int i=1; i<n; i++) {
if(prices[i]<minPrice)
minPrice = prices[i];
else
maxLeftProfit = max(maxLeftProfit, prices[i]-minPrice);
leftProfit[i] = maxLeftProfit;
} int ret = leftProfit[n-1];
int maxRightProfit = 0, maxPrice = prices[n-1];
for(int i=n-2; i>=0; i--) {
if(prices[i]>maxPrice)
maxPrice = prices[i];
else
maxRightProfit = max(maxRightProfit, maxPrice-prices[i]);
ret = max(ret, maxRightProfit + leftProfit[i]);
} return ret;
}
};

  

类似题目:

[LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

[LeetCode] 122. Best Time to Buy and Sell Stock II 买卖股票的最佳时间 II

[LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

[LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期

All LeetCode Questions List 题目汇总

  

[LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III的更多相关文章

  1. [LeetCode] 122. Best Time to Buy and Sell Stock II 买卖股票的最佳时间 II

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. [LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  3. [LeetCode] Best Time to Buy and Sell Stock IV 买卖股票的最佳时间之四

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. LeetCode 121. Best Time to Buy and Sell Stock (买卖股票的最好时机)

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  5. [LeetCode] Best Time to Buy and Sell Stock with Cooldown 买股票的最佳时间含冷冻期

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  6. LN : leetcode 123 Best Time to Buy and Sell Stock III

    lc 123 Best Time to Buy and Sell Stock III 123 Best Time to Buy and Sell Stock III Say you have an a ...

  7. [leetcode]123. Best Time to Buy and Sell Stock III 最佳炒股时机之三

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  8. 122 Best Time to Buy and Sell Stock II 买卖股票的最佳时机 II

    假设有一个数组,它的第 i 个元素是一个给定的股票在第 i 天的价格.设计一个算法来找到最大的利润.你可以完成尽可能多的交易(多次买卖股票).然而,你不能同时参与多个交易(你必须在再次购买前出售股票) ...

  9. Java for LeetCode 123 Best Time to Buy and Sell Stock III【HARD】

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

随机推荐

  1. Django设置应用名与模型名为中文

    修改polls包里面的apps.py: from django.apps import AppConfig class PollsConfig(AppConfig): name = 'polls' v ...

  2. Lovers(HDU6562+线段树+2018年吉林站)

    题目链接 传送门 题意 初始时有\(n\)个空串,然后进行\(q\)次操作,操作分为以下两种: wrap l r x:把\(l,r\)中的每个字符串的首尾都加入\(x\),如\(s_i=121,x=3 ...

  3. Python实现描述性统计

    该篇笔记由木东居士提供学习小组.资料 描述性统计的概念很好理解,在日常工作中我们也经常会遇到需要使用描述性统计来表述的问题.以下,我们将使用Python实现一系列的描述性统计内容. 有关python环 ...

  4. [Javascript] Use requestIdleCallback to schedule JavaScript tasks at an optimal time

    JavaScript is single-threaded, which can present some problems when creating an interactive user exp ...

  5. 样式声明对象:document.styleSheets[0].rules[4].style;

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. Java web开发——文件的上传和下载

    一. 功能性需求与非功能性需求 要求操作便利,一次选择多个文件和文件夹进行上传:支持PC端全平台操作系统,Windows,Linux,Mac 支持文件和文件夹的批量下载,断点续传.刷新页面后继续传输. ...

  7. NOI 2019 游记

    day -1 去报了个到,顺便买了一大堆衣服. 感觉学校饭堂不太行. day 0 上午是开幕式,. 下午是笔试,顺利获得 \(100\) 分. day 1 先看题. 第一题看到 \(At^2+Bt+C ...

  8. P2388 阶乘之乘

    首先感谢wxy学长之前告诉我这道题,结果今天竟然一眼切了,咕咕咕 题目链接: P2388 阶乘之乘 题目思路: 第一眼看到一定想到的是先求一下阶乘然后看最后又几个零,但是这样会TIL啊 想一下0是怎么 ...

  9. 超参数(Hyperparameter)

    什么是超参数? 机器学习模型中一般有两类参数:一类需要从数据中学习和估计得到,称为模型参数(Parameter)---即模型本身的参数.比如,线性回归直线的加权系数(斜率)及其偏差项(截距)都是模型参 ...

  10. vue on-change 如果有循环的timer 则无限自动执行

    <div class="contract-class"> <Checkbox v-model="smallChecked" :on-chang ...