一:逻辑回归(Logistic Regression)

  背景:假设你是一所大学招生办的领导,你依据学生的成绩,给与他入学的资格。现在有这样一组以前的数据集ex2data1.txt,第一列表示第一次测验的分数,第二列表示第二次测验的分数,第三列1表示允许入学,0表示不允许入学。现在依据这些数据集,设计出一个模型,作为以后的入学标准。

  

  我们通过可视化这些数据集,发现其与某条直线方程有关,而结果又只有两类,故我们接下来使用逻辑回归去拟合该数据集。

  

  1,回归方程的脚本ex2.m:

%% Machine Learning Online Class - Exercise : Logistic Regression
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the logistic
% regression exercise. You will need to complete the following functions
% in this exericse:
%
% sigmoid.m
% costFunction.m
% predict.m
% costFunctionReg.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
% %% Initialization
clear ; close all; clc %% Load Data
% The first two columns contains the exam scores and the third column
% contains the label. data = load('ex2data1.txt');
X = data(:, [, ]); y = data(:, ); %% ==================== Part : Plotting ====================
% We start the exercise by first plotting the data to understand the
% the problem we are working with. fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
'indicating (y = 0) examples.\n']); plotData(X, y); % Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score') % Specified in plot order
legend('Admitted', 'Not admitted')
hold off; fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% ============ Part : Compute Cost and Gradient ============
% In this part of the exercise, you will implement the cost and gradient
% for logistic regression. You neeed to complete the code in
% costFunction.m % Setup the data matrix appropriately, and add ones for the intercept term
[m, n] = size(X); % Add intercept term to x and X_test
X = [ones(m, ) X]; % Initialize fitting parameters
initial_theta = zeros(n + , ); % Compute and display initial cost and gradient
[cost, grad] = costFunction(initial_theta, X, y); fprintf('Cost at initial theta (zeros): %f\n', cost);
fprintf('Expected cost (approx): 0.693\n');
fprintf('Gradient at initial theta (zeros): \n');
fprintf(' %f \n', grad);
fprintf('Expected gradients (approx):\n -0.1000\n -12.0092\n -11.2628\n'); % Compute and display cost and gradient with non-zero theta
test_theta = [-; 0.2; 0.2];
[cost, grad] = costFunction(test_theta, X, y); fprintf('\nCost at test theta: %f\n', cost);
fprintf('Expected cost (approx): 0.218\n');
fprintf('Gradient at test theta: \n');
fprintf(' %f \n', grad);
fprintf('Expected gradients (approx):\n 0.043\n 2.566\n 2.647\n'); fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% ============= Part : Optimizing using fminunc =============
% In this exercise, you will use a built-in function (fminunc) to find the
% optimal parameters theta. % Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', ); % Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options); % Print theta to screen
fprintf('Cost at theta found by fminunc: %f\n', cost);
fprintf('Expected cost (approx): 0.203\n');
fprintf('theta: \n');
fprintf(' %f \n', theta);
fprintf('Expected theta (approx):\n');
fprintf(' -25.161\n 0.206\n 0.201\n'); % Plot Boundary
plotDecisionBoundary(theta, X, y); % Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score') % Specified in plot order
legend('Admitted', 'Not admitted')
hold off; fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% ============== Part : Predict and Accuracies ==============
% After learning the parameters, you'll like to use it to predict the outcomes
% on unseen data. In this part, you will use the logistic regression model
% to predict the probability that a student with score on exam and
% score on exam will be admitted.
%
% Furthermore, you will compute the training and test set accuracies of
% our model.
%
% Your task is to complete the code in predict.m % Predict probability for a student with score on exam
% and score on exam prob = sigmoid([ ] * theta);
fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
'probability of %f\n'], prob);
fprintf('Expected value: 0.775 +/- 0.002\n\n'); % Compute accuracy on our training set
p = predict(theta, X); fprintf('Train Accuracy: %f\n', mean(double(p == y)) * );
fprintf('Expected accuracy (approx): 89.0\n');
fprintf('\n');

ex2.m

  

  2,可视化数据plotData.m:

function plotData(X, y)
%PLOTDATA Plots the data points X and y into a new figure
% PLOTDATA(x,y) plots the data points with + for the positive examples
% and o for the negative examples. X is assumed to be a Mx2 matrix. % Create New Figure
figure; hold on; % ====================== YOUR CODE HERE ======================
% Instructions: Plot the positive and negative examples on a
% 2D plot, using the option 'k+' for the positive
% examples and 'ko' for the negative examples.
% pos=find(y==);
neg=find(y==);
plot(X(pos,),X(pos,),'k+','LineWidth',,'MarkerSize',);
plot(X(neg,),X(neg,),'ko','MarkerFaceColor','y','MarkerSize',); % ========================================================================= hold off; end

plotData.m

  

  3,逻辑回归的逻辑函数(Sigmoid Function/Logistic Function):

  $h_{\theta}(x)=g(\theta^{T}x)$ :表示在输入为$x$,预测为$y=1$的概率

  $g(z)=\frac{1}{1+e^{-z}}$  

function g = sigmoid(z)
%SIGMOID Compute sigmoid function
% g = SIGMOID(z) computes the sigmoid of z. % You need to return the following variables correctly
g = zeros(size(z)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
% vector or scalar). g=./(+exp(-z)); % ============================================================= end

sigmoid.m

  4,逻辑回归的代价函数:

  $J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}log(h_\theta(x^{(i)}))+(1-y^{(i)})log(1-h_{\theta}(x^{(i)}))]$

function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters. % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = ;
grad = zeros(size(theta)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
% h=sigmoid(X*theta); %求hθ(x)
J=-sum(y.*log(h)+(-y).*log(-h))/m; %代价函数 grad=(X')*(h-y)./m; %梯度下降,没有学习速率α,之后给我们调用内置函数fminunc使用 ## h=sigmoid(X*theta);
##J=sum(-y'*log(h)-(1-y)'*log(-h))/m;
##grad=((h-y)'*X)/m; % ============================================================= end

costFunction.m

  5,带学习速率$\alpha$的梯度下降:

  $\theta_j:=\theta_j-\frac{\alpha}{m }\sum_{i=1}^{m}[(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_j]$

  

  不带学习速率$\alpha$的梯度下降(给之后fminunc作为梯度下降使用):

  $\frac{\partial J(\theta)}{\partial \theta_j}=\frac{1}{m}\sum_{i=1}^{m}[(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_j]$

  使用内置fminunc函数来拟合参数$\theta$,之前我们是使用梯度下降来拟合参数$\theta$的,在这同样也能使用,不过我们这里使用内置fminunc函数来去拟合,它会自动选择学习速率$\alpha$,不需要我们手工选择,我们只需要给定一个迭代次数,一个写好的代价函数,初始化$\theta$,最后它会为我们找到最优的$\theta$,它像可以加强版的梯度下降法。

options = optimset('GradObj', 'on', 'MaxIter', );
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);//自己写好的costFunction函数

  

  6,根据拟合好的参数$\theta$,预测数据,例如我们想预测某学生第一次分数为45,第二次分数为85,该学生能入学的概率为:

prob = sigmoid([  ] * theta); %入学的概率

  预测样本X,我们可以看到预测的准确率为89%。

function p = predict(theta, X)
%PREDICT Predict whether the label is or using learned logistic
%regression parameters theta
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1) m = size(X, ); % Number of training examples % You need to return the following variables correctly
p = zeros(m, ); % ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters.
% You should set p to a vector of 's and 1's
% %第一种
for i=:m
p(i,)=sigmoid(X(i,:)*theta)>=0.5; %预测每一个样本的结果,大于0.5为正向类
end; %第二种
%
## ans=sigmoid(X*theta);
## for i=:m
## if(ans(i,)>=0.5)
## p(i,)=;
## else
## p(i,)=;
## end % ========================================================================= end

predict.m

二:正则化逻辑回归(Regularized logistic regression):

  背景:假如你是某所工厂的管理员,该工厂生产芯片,每片芯片要经过两次测试后,达到标准方可通过,现在有一组以前的数据集ex2data2.txt,第一列为第一次测试的结果,第二列为第二次测试的结果,第三列1表示该芯片合格,0表示不合格。现在要你通过这些数据,拟合出一个模型,这个模型将作为以后判断芯片是否合格的标准。

  

  我们通过可视化这些数据集,发现其与某条复杂的曲线方程有关,而数据集只有两个特征$x_1$和$x_2$,显然是拟合不出曲线,那么我们可以通过原本的两个特征创造出更多的特征,将原本的特征映射为6次幂,这样我们就得到了28维的特征向量。当特征多了的话,很可能会出现过拟合,显然这不是我们想要的(即是它能很好的拟合原训练集,但预测新样本的能力会很低)。

构造更多的特征:

function out = mapFeature(X1, X2)
% MAPFEATURE Feature mapping function to polynomial features
%
% MAPFEATURE(X1, X2) maps the two input features
% to quadratic features used in the regularization exercise.
%
% Returns a new feature array with more features, comprising of
% X1, X2, X1.^, X2.^, X1*X2, X1*X2.^, etc..
%
% Inputs X1, X2 must be the same size
% degree = ;
out = ones(size(X1(:,)));
for i = :degree
for j = :i
out(:, end+) = (X1.^(i-j)).*(X2.^j);
end
end end

mapFeature.m

所以这时我们使用正则化(Regularization)来解决过拟合的问题。

  1,正则化回归的脚本ex2.m: 

%% Machine Learning Online Class - Exercise : Logistic Regression
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the second part
% of the exercise which covers regularization with logistic regression.
%
% You will need to complete the following functions in this exericse:
%
% sigmoid.m
% costFunction.m
% predict.m
% costFunctionReg.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
% %% Initialization
clear ; close all; clc %% Load Data
% The first two columns contains the X values and the third column
% contains the label (y). data = load('ex2data2.txt');
X = data(:, [, ]); y = data(:, ); plotData(X, y); % Put some labels
hold on; % Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2') % Specified in plot order
legend('y = 1', 'y = 0')
hold off; %% =========== Part : Regularized Logistic Regression ============
% In this part, you are given a dataset with data points that are not
% linearly separable. However, you would still like to use logistic
% regression to classify the data points.
%
% To do so, you introduce more features to use -- in particular, you add
% polynomial features to our data matrix (similar to polynomial
% regression).
% % Add Polynomial Features % Note that mapFeature also adds a column of ones for us, so the intercept
% term is handled
X = mapFeature(X(:,), X(:,)); %c从原来的二维变成了28(+1截距项)维,m* % Initialize fitting parameters
initial_theta = zeros(size(X, ), ); % Set regularization parameter lambda to
lambda = ; % Compute and display initial cost and gradient for regularized logistic
% regression
[cost, grad] = costFunctionReg(initial_theta, X, y, lambda); fprintf('Cost at initial theta (zeros): %f\n', cost);
fprintf('Expected cost (approx): 0.693\n');
fprintf('Gradient at initial theta (zeros) - first five values only:\n');
fprintf(' %f \n', grad(:));
fprintf('Expected gradients (approx) - first five values only:\n');
fprintf(' 0.0085\n 0.0188\n 0.0001\n 0.0503\n 0.0115\n'); fprintf('\nProgram paused. Press enter to continue.\n');
pause; % Compute and display cost and gradient
% with all-ones theta and lambda =
test_theta = ones(size(X,),);
[cost, grad] = costFunctionReg(test_theta, X, y, ); fprintf('\nCost at test theta (with lambda = 10): %f\n', cost);
fprintf('Expected cost (approx): 3.16\n');
fprintf('Gradient at test theta - first five values only:\n');
fprintf(' %f \n', grad(:));
fprintf('Expected gradients (approx) - first five values only:\n');
fprintf(' 0.3460\n 0.1614\n 0.1948\n 0.2269\n 0.0922\n'); fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% ============= Part : Regularization and Accuracies =============
% Optional Exercise:
% In this part, you will get to try different values of lambda and
% see how regularization affects the decision coundart
%
% Try the following values of lambda (, , , ).
%
% How does the decision boundary change when you vary lambda? How does
% the training set accuracy vary?
% % Initialize fitting parameters
initial_theta = zeros(size(X, ), ); % Set regularization parameter lambda to (you should vary this)
lambda = ; % Set Options
options = optimset('GradObj', 'on', 'MaxIter', ); % Optimize
[theta, J, exit_flag] = ...
fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options); % Plot Boundary
plotDecisionBoundary(theta, X, y);
hold on;
title(sprintf('lambda = %g', lambda)) % Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2') legend('y = 1', 'y = 0', 'Decision boundary')
hold off; % Compute accuracy on our training set
p = predict(theta, X); fprintf('Train Accuracy: %f\n', mean(double(p == y)) * );
fprintf('Expected accuracy (with lambda = 1): 83.1 (approx)\n');

ex2_reg.m

  2,正则化逻辑回归代价函数(忽略偏差项$\theta_0$的正则化):

  $J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}log(h_\theta(x^{(i)}))+(1-y^{(i)})log(1-h_{\theta}(x^{(i)}))]+\frac{\lambda }{2m}\sum_{j=1}^{n}\theta_j^{2}$

  

  3,梯度下降:

  带学习速率:

    $\theta_0:=\theta_0-\alpha \frac{1}{m }\sum_{i=1}^{m}[(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_0]$   for $j=0$

    $\theta_j:=\theta_j-\alpha (\frac{1}{m }\sum_{i=1}^{m}[(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_j]+\frac{\lambda }{m}\theta_j)$  for $j\geq 1$

  不带学习速率(给之后fminunc作为梯度下降使用):

    $\frac{\partial J(\theta)}{\partial \theta_0}=\frac{1}{m}\sum_{i=1}^{m}[(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_0]$  for $j=0$

    $\frac{\partial J(\theta)}{\partial \theta_j}=(\frac{1}{m}\sum_{i=1}^{m}[(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_j])+\frac{\lambda }{m}\theta_j $ for $j\geq 1$

  

function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters. % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = ;
grad = zeros(size(theta)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta h=sigmoid(X*theta);
n=size(X,);
J=(-(y')*log(h)-(1-y)'*log(-h))/m+(lambda/(*m))*sum(theta([:n],:).^); %忽略偏差项θ()的影响 grad(,)=((X(:,)')*(h-y))/m; %梯度下降
grad([:n],:)=(X(:,[:n])')*(h-y)./m+(theta([2:n],:)).*(lambda/m); ##h=sigmoid(X*theta);
##theta(,)=;
##J=sum(-y'*log(h)-(1-y)'*log(-h))/m+lambda//m*sum(power(theta,));
##grad=((h-y)'*X)/m+lambda/m*theta';
% ============================================================= end

costFunctionReg.m

  我们可以选择不同的$\lambda$大小去拟合数据集并可视化,选择一个较优的$lambda$。

  4,预测方法跟逻辑回归差不多,只是现在加入要预测第一次分数为45,第二次分数为80时,要先将这两个特征放到mapFeature函数构造。

我的标签:做个有情怀的程序员。

Andrew Ng机器学习 二: Logistic Regression的更多相关文章

  1. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  2. Andrew Ng机器学习课程笔记(二)之逻辑回归

    Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...

  3. Andrew Ng机器学习课程6

    Andrew Ng机器学习课程6 说明 在前面尾随者台大机器学习基石课程和机器学习技法课程的设置,对机器学习所涉及到的大部分的知识有了一个较为全面的了解,可是对于没有动手敲代码并加以使用的情况,基本上 ...

  4. Andrew Ng机器学习课程10

    Andrew Ng机器学习课程10 a example 如果hypothesis set中的hypothesis是由d个real number决定的,那么用64位的计算机数据表示的话,那么模型的个数一 ...

  5. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  6. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  7. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

  8. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  9. Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计

    Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...

随机推荐

  1. .Net Core个人笔记

    目录 前言 IOC注册 三种生命周期 如何注册一个IOC服务 .Net Core部署IIS之后500错误 管道和中间件 示意图 管道方法 中间件 加日志观看 使用MVC MVC服务注入 MVC管道调用 ...

  2. IDEA下同时使用Git和svn

    使用Git时将文件改成Git,Svn时改成svn 修改项目下.idea目录的vcs.xml配置文件. <?xml version="1.0" encoding="U ...

  3. C#中标准的IDispose模式

    C#实现IDispose接口   .net的GC机制有两个问题:首先GC并不能释放所有资源,它更不能释放非托管资源.其次,GC也不是实时的,所有GC存在不确定性.为了解决这个问题donet提供了析构函 ...

  4. Oracle和Mysql中的字符串的拼接

    SQL允许两个或者多个字段之间进行计算,字符串类型的字段也不例外.比如我们需要 以"工号+姓名"的方式在报表中显示一个员工的信息,那么就需要把工号和姓名两个字符 串类型的字段拼接计 ...

  5. Selenium自动化获取WebSocket信息

    性能日志 ChromeDriver支持性能日志记录,您可以从中获取域“时间轴”,“网络”和“页面”的事件,以及指定跟踪类别的跟踪数据. 启用性能日志 默认情况下不启用性能日志记录.因此,在创建新会话时 ...

  6. 高仿linux下的ls -l命令——C语言实现

    主要用到的函数可以参考头文件,仅仅支持ls -l这功能,扩展就交给大家了0.0 相关测试图片: ​ ​ 话不多说,直接上码 #include <stdio.h> #include < ...

  7. MVC与MTV模型

    MVC与MTV模型 MVC Web服务器开发领域里著名的MVC模式,所谓MVC就是把Web应用分为模型(M),控制器(C)和视图(V)三层,他们之间以一种插件式的.松耦合的方式连接在一起,模型负责业务 ...

  8. caurina缓动类

    一.简单的缓动 一个实例名为box的正方体,开始alpha为0.5,在两秒内移动到x:300 y:100的位置,alpha变为1.import caurina.transitions.Tweener; ...

  9. promise实现

    目录 promise实现 Promise 是 ES6 新增的语法,解决了回调地狱的问题. 可以把 Promise 看成一个状态机.初始是 pending 状态,可以通过函数 resolve 和 rej ...

  10. Spring Boot,Spring Security实现OAuth2 + JWT认证

    阅读此文,希望是对JWT以及OAuth2有一定了解的童鞋. JWT认证,提供了对称加密以及非对称的实现. 内容源码点我 涉及到源码中两个服务 spring-boot-oauth-jwt-server ...