wave数据集的回归曲线

import matplotlib.pyplot as plt
import mglearn
from scipy import sparse
import numpy as np
import matplotlib as mt
import pandas as pd
from IPython.display import display
from sklearn.datasets import load_iris
import sklearn as sk
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier X,y = mglearn.datasets.make_forge()
print(X)
print(y)
mglearn.discrete_scatter(X[:,0],X[:,1],y)
plt.legend("c1 0","c2 1",loc=4)
plt.xlabel("first feature")
plt.ylabel("second feature")
plt.show() X,y = mglearn.datasets.make_wave(n_samples=40)
print(X)
print(y)
plt.plot(X,y,'o')
plt.show()

输出:

[[ 9.96346605  4.59676542]
[11.0329545 -0.16816717]
[11.54155807 5.21116083]
[ 8.69289001 1.54322016]
[ 8.1062269 4.28695977]
[ 8.30988863 4.80623966]
[11.93027136 4.64866327]
[ 9.67284681 -0.20283165]
[ 8.34810316 5.13415623]
[ 8.67494727 4.47573059]
[ 9.17748385 5.09283177]
[10.24028948 2.45544401]
[ 8.68937095 1.48709629]
[ 8.92229526 -0.63993225]
[ 9.49123469 4.33224792]
[ 9.25694192 5.13284858]
[ 7.99815287 4.8525051 ]
[ 8.18378052 1.29564214]
[ 8.7337095 2.49162431]
[ 9.32298256 5.09840649]
[10.06393839 0.99078055]
[ 9.50048972 -0.26430318]
[ 8.34468785 1.63824349]
[ 9.50169345 1.93824624]
[ 9.15072323 5.49832246]
[11.563957 1.3389402 ]]
[1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0] [[-0.75275929]
[ 2.70428584]
[ 1.39196365]
[ 0.59195091]
[-2.06388816]
[-2.06403288]
[-2.65149833]
[ 2.19705687]
[ 0.60669007]
[ 1.24843547]
[-2.87649303]
[ 2.81945911]
[ 1.99465584]
[-1.72596534]
[-1.9090502 ]
[-1.89957294]
[-1.17454654]
[ 0.14853859]
[-0.40832989]
[-1.25262516]
[ 0.67111737]
[-2.16303684]
[-1.24713211]
[-0.80182894]
[-0.26358009]
[ 1.71105577]
[-1.80195731]
[ 0.08540663]
[ 0.55448741]
[-2.72129752]
[ 0.64526911]
[-1.97685526]
[-2.60969044]
[ 2.69331322]
[ 2.7937922 ]
[ 1.85038409]
[-1.17231738]
[-2.41396732]
[ 1.10539816]
[-0.35908504]]
[-0.44822073 0.33122576 0.77932073 0.03497884 -1.38773632 -2.47196233
-1.52730805 1.49417157 1.00032374 0.22956153 -1.05979555 0.7789638
0.75418806 -1.51369739 -1.67303415 -0.90496988 0.08448544 -0.52734666
-0.54114599 -0.3409073 0.21778193 -1.12469096 0.37299129 0.09756349
-0.98618122 0.96695428 -1.13455014 0.69798591 0.43655826 -0.95652133
0.03527881 -2.08581717 -0.47411033 1.53708251 0.86893293 1.87664889
0.0945257 -1.41502356 0.25438895 0.09398858]

matplotlib.pyplot.plot()参数详解:

绘制线条或标记的轴。参数是一个可变长度参数,允许多个X、Y对可选的格式字符串。

例如,下面的每一个都是合法的:

plot(x, y)       #plot x, y使用默认的线条样式和颜色

plot(x, y, 'bo')    #plot x,y用蓝色圆圈标记

plot(y)    #plot y用x作为自变量

plot(y, 'r+')      #同上,但是是用红色作为标记

如果x或y是2维的,那么相应的列将被绘制。

x、y的任意数,格式可以如下:

a.plot(x1, y1, 'g^', x2, y2, 'g-')

默认情况下,每个行被指定一个由“颜色周期”指定的不同颜色。要改变这种行为,可以编辑axes.color_cycle中的rcparam。

下面的字符用来描述绘制的图形:

字符

描述

'-'

实线

'--'

虚线

'-.'

点线

':'

点虚线

'.'

','

像素

'o'

圆形

'v'

朝下的三角形

'^'

朝上的三角形

'<'

朝左的三角形

'>'

朝右的三角形

'1'

tri_down marker

'2'

tri_up marker

'3'

tri_left marker

'4'

tri_right marker

's'

正方形

'p'

五角形

'*'

星型

'h'

1号六角形

'H'

2号六角形

'+'

+号标记

'x'

x号标记

'D'

钻石形

'd'

小版钻石形

'|'

垂直线形

'_'

水平线行

颜色用以下字符表示:

字符

颜色

‘b’

蓝色

‘g’

绿色

‘r’

红色

‘c’

青色

‘m’

品红

‘y’

黄色

‘k’

黑色

‘w’

白色

此外,你可以在很多古怪的方式和精彩的指定颜色,包括完整的名称(绿色的),十六进制字符串(“# 008000”)、RGB、RGBA元组((0,1,0,1))或灰度强度作为一个字符串(‘0.8’)。这些字符串的规格可用于格式化,但以元组的形式只能用作**kwargs。

线条样式和颜色组合在一个单一的格式字符串中,如在’bo’为蓝色圆圈。

wave数据集的回归曲线的更多相关文章

  1. K邻近回归算法

    代码: # -*- coding: utf-8 -*- """ Created on Fri Jul 13 10:40:22 2018 @author: zhen &qu ...

  2. Python机器学习基础教程-第2章-监督学习之线性模型

    前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...

  3. Python机器学习基础教程-第2章-监督学习之K近邻

    前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...

  4. 二、【Python】机器学习-监督学习

    关键词 分类(Classification) 回归(Regression) 泛化(Generalize) 过拟合(Overfitting) 欠拟合(Underfitting) 2.1 分类与回归 监督 ...

  5. zhuan 常用图像数据集:标注、检索

      目录(?)[+]   1.搜狗实验室数据集: http://www.sogou.com/labs/dl/p.html 互联网图片库来自sogou图片搜索所索引的部分数据.其中收集了包括人物.动物. ...

  6. 【机器学习】【计算机视觉】非常全面的图像数据集《Actions》

    目录(?)[+]   1.搜狗实验室数据集: http://www.sogou.com/labs/dl/p.html 互联网图片库来自sogou图片搜索所索引的部分数据.其中收集了包括人物.动物.建筑 ...

  7. RIFF和WAVE音频文件格式

    RIFF file format RIFF全称为资源互换文件格式(Resources Interchange File Format),是Windows下大部分多媒体文件遵循的一种文件结构.RIFF文 ...

  8. SSD框架训练自己的数据集

    SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证.本文介绍如何使用SSD实现对自己数据集的训练和验证过程,内容包括: 1 数据集的标注2 数据集的转换3 使用SSD如 ...

  9. HTML5 数据集属性dataset

    有时候在HTML元素上绑定一些额外信息,特别是JS选取操作这些元素时特别有帮助.通常我们会使用getAttribute()和setAttribute()来读和写非标题属性的值.但为此付出的代价是文档将 ...

随机推荐

  1. PHP——汉字完美转为ASCII码

    前言 对接联通的接口,让我学会了不少PHP偏门函数....,主要对方用的py,我这用的PHP,人家一个函数解决了, 我这还要自己写方法,也是比较蛋疼,但是学到东西还是很开心的~ 代码 字符串转为ASC ...

  2. c++中的static,const,const static以及它们的初始化

    const定义的常量在超出其作用域之后其空间会被释放,而static定义的静态常量在函数执行后不会释放其存储空间. static表示的是静态的.类的静态成员函数.静态成员变量是和类相关的,而不是和类的 ...

  3. 2019ICPC南京网络赛B super_log——扩展欧拉定理

    题目 设函数 $$log_a*(x) = \begin{cases}-1, & \text{ if } x < 1 \\ 1+log_a*(log_ax) & \text{ if ...

  4. JS AJAX和JSONP的基础功能封装以及使用示例;

    1.代码: function ajax(options){ options = options || {}; options.type = options.type || "get" ...

  5. Kubernetes 学习14 kubernetes statefulset

    一.概述 1.在应用程序中我们有两类,一种是有状态一种是无状态.此前一直演示的是deployment管理的应用,比如nginx或者我们自己定义的myapp它们都属于无状态应用. 2.而对于有状态应用, ...

  6. SaltStack 在 Windows 上的操作基础

    SaltStack 在 windows上的操作基础 1.删除文件: salt '172.16.3.11' file.remove 'D:\downup\111.msu' 2.删除文件夹 salt '1 ...

  7. 关于size

    关于size它确实可以帮人算内存 但是: 在不会用到整个数组(尤其是在状压的时候) 不要用它,它只能算你申请了多少内存,但算不了会用多少!!! and 有人能告诉我,交题前不好好看看交的哪份代码是什么 ...

  8. UOJ73 【WC2015】未来程序

    题目描述:给出输入和暴力程序,求输出.共10个测试点. 测试点1: 输入\(a,b,c\),求\(a\times b \ \mathrm{mod} \ c\) \(a,b,c\)属于long long ...

  9. day25 内置常用模块(四): 模块和包

    阅读目录: 模块 import from xxx import xxx 包 import from xxx import xxx    from xxx  import *    __init__.p ...

  10. 本地spark报:java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.createFileWithMode0(Ljava/lang/String;JJJI)Ljava/io/FileDescriptor;

    我是在运行rdd.saveAsTextFile(fileName)的时候报的错,找了很多说法……最终是跑到hadoop/bin文件夹下删除了hadoop.dll后成功.之前某些说法甚至和这个解决方法自 ...