这是一个完整的程序,值得保存

1、对图片进行预处理并保存
import glob
import os.path
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile # 原始输入数据的目录,这个目录下有5个子目录,每个子目录底下保存这属于该
# 类别的所有图片。
INPUT_DATA = './dataset/flower_photos'
# 输出文件地址。我们将整理后的图片数据通过numpy的格式保存。
OUTPUT_FILE = './dataset/flower_processed_data.npy' # 这里教你怎么生成.npy文件 # 测试数据和验证数据比例。 VALIDATION_PERCENTAGE = 10
TEST_PERCENTAGE = 10 # 读取数据并将数据分割成训练数据、验证数据和测试数据。
def create_image_lists(sess, testing_percentage, validation_percentage):
sub_dirs = [x[0] for x in os.walk(INPUT_DATA)] # 通过在目录树中游走,输出目录中的文件名
# sub_dirs里包含['./dataset/flower_photos', './dataset/flower_photos\\daisy',
# './dataset/flower_photos\\dandelion', './dataset/flower_photos\\roses',
# './dataset/flower_photos\\sunflowers', './dataset/flower_photos\\tulips']
is_root_dir = True # 初始化各个数据集。
training_images = []
training_labels = []
testing_images = []
testing_labels = []
validation_images = []
validation_labels = []
current_label = 0 # 读取所有的子目录。
for sub_dir in sub_dirs:
if is_root_dir:
is_root_dir = False
continue # 获取一个子目录中所有的图片文件。
extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
file_list = []
dir_name = os.path.basename(sub_dir) # 得到的是从后往前数第一个名,也就是daisy、dandelion等名字
for extension in extensions:
file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension) # 用*做模糊匹配
file_list.extend(glob.glob(file_glob))
if not file_list: continue
print("processing:", dir_name) i = 0
# 处理图片数据。
for file_name in file_list: # 都是在张量下处理数据
i += 1
# 读取并解析图片,将图片转化为299*299以方便inception-v3模型来处理。
image_raw_data = gfile.FastGFile(file_name, 'rb').read()
image = tf.image.decode_jpeg(image_raw_data)
if image.dtype != tf.float32:
image = tf.image.convert_image_dtype(image, dtype=tf.float32) # 将像素值从[0, 255]转换到[0, 1]
image = tf.image.resize_images(image, [229, 229])
image_value = sess.run(image) # 记得要run一下 # 随机划分数据聚。
chance = np.random.randint(100)
if chance < validation_percentage:
validation_images.append(image_value)
validation_labels.append(current_label)
elif chance < (testing_percentage + validation_percentage):
testing_images.append(image_value)
testing_labels.append(current_label)
else:
training_images.append(image_value)
training_labels.append(current_label)
if i % 200 == 0:
print(i, "images processed.")
current_label += 1 # 将训练数据随机打乱以获得更好的训练效果。
state = np.random.get_state()
np.random.shuffle(training_images)
np.random.set_state(state)
np.random.shuffle(training_labels) return np.asarray([training_images, training_labels,
validation_images, validation_labels,
testing_images, testing_labels]) with tf.Session() as sess:
processed_data = create_image_lists(sess, TEST_PERCENTAGE, VALIDATION_PERCENTAGE)
# 通过numpy格式保存处理后的数据。
np.save(OUTPUT_FILE, processed_data) # 记住这里的np形式,将处理的图片保存到.npy文件
2、进行迁移学习
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
import tensorflow.contrib.slim.python.slim.nets.inception_v3 as inception_v3 # 处理好之后的数据文件。
INPUT_DATA = '../../dataset/flower_processed_data.npy'
# 保存训练好的模型的路径。
TRAIN_FILE = 'train_dir/model' CKPT_FILE = '../../dataset/inception_v3.ckpt' # 定义训练中使用的参数。
LEARNING_RATE = 0.0001
STEPS = 300
BATCH = 32
N_CLASSES = 5 # 不需要从谷歌训练好的模型中加载的参数。
CHECKPOINT_EXCLUDE_SCOPES = 'InceptionV3/Logits,InceptionV3/AuxLogits' # 需要训练的网络层参数明层,在fine-tuning的过程中就是最后的全联接层。
TRAINABLE_SCOPES='InceptionV3/Logits,InceptionV3/AuxLogit' def get_tuned_variables():
exclusions = [scope.strip() for scope in CHECKPOINT_EXCLUDE_SCOPES.split(',')]
variables_to_restore = []
# 枚举inception-v3模型中所有的参数,然后判断是否需要从加载列表中移除。
for var in slim.get_model_variables():
excluded = False
for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
return variables_to_restore def get_trainable_variables():
scopes = [scope.strip() for scope in TRAINABLE_SCOPES.split(',')]
variables_to_train = [] # 枚举所有需要训练的参数前缀,并通过这些前缀找到所有需要训练的参数。
for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
return variables_to_train def main():
# 加载预处理好的数据。
processed_data = np.load(INPUT_DATA)
training_images = processed_data[0]
n_training_example = len(training_images)
training_labels = processed_data[1] validation_images = processed_data[2]
validation_labels = processed_data[3] testing_images = processed_data[4]
testing_labels = processed_data[5]
print("%d training examples, %d validation examples and %d testing examples." % (
n_training_example, len(validation_labels), len(testing_labels))) # 定义inception-v3的输入,images为输入图片,labels为每一张图片对应的标签。
images = tf.placeholder(tf.float32, [None, 299, 299, 3], name='input_images')
labels = tf.placeholder(tf.int64, [None], name='labels') # 定义inception-v3模型。因为谷歌给出的只有模型参数取值,所以这里
# 需要在这个代码中定义inception-v3的模型结构。虽然理论上需要区分训练和
# 测试中使用到的模型,也就是说在测试时应该使用is_training=False,但是
# 因为预先训练好的inception-v3模型中使用的batch normalization参数与
# 新的数据会有出入,所以这里直接使用同一个模型来做测试。
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
logits, _ = inception_v3.inception_v3(
images, num_classes=N_CLASSES, is_training=True) trainable_variables = get_trainable_variables()
# 定义损失函数和训练过程。
tf.losses.softmax_cross_entropy(
tf.one_hot(labels, N_CLASSES), logits, weights=1.0)
total_loss = tf.losses.get_total_loss()
train_step = tf.train.RMSPropOptimizer(LEARNING_RATE).minimize(total_loss) # 计算正确率。
with tf.name_scope('evaluation'):
correct_prediction = tf.equal(tf.argmax(logits, 1), labels)
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 定义加载Google训练好的Inception-v3模型的Saver。
load_fn = slim.assign_from_checkpoint_fn(
CKPT_FILE,
get_tuned_variables(),
ignore_missing_vars=True) # 定义保存新模型的Saver。
saver = tf.train.Saver() with tf.Session() as sess:
# 初始化没有加载进来的变量。
init = tf.global_variables_initializer()
sess.run(init) # 加载谷歌已经训练好的模型。
print('Loading tuned variables from %s' % CKPT_FILE)
load_fn(sess) start = 0
end = BATCH
for i in range(STEPS):
_, loss = sess.run([train_step, total_loss], feed_dict={
images: training_images[start:end],
labels: training_labels[start:end]}) if i % 30 == 0 or i + 1 == STEPS: # 最后一步的参数一定要保存
saver.save(sess, TRAIN_FILE, global_step=i) # 保存新的ckpt文件 validation_accuracy = sess.run(evaluation_step, feed_dict={
images: validation_images, labels: validation_labels})
print('Step %d: Training loss is %.1f Validation accuracy = %.1f%%' % (
i, loss, validation_accuracy * 100.0)) start = end
if start == n_training_example:
start = 0 end = start + BATCH
if end > n_training_example:
end = n_training_example # 在最后的测试数据上测试正确率。
test_accuracy = sess.run(evaluation_step, feed_dict={
images: testing_images, labels: testing_labels})
print('Final test accuracy = %.1f%%' % (test_accuracy * 100))

Tensorflow细节-P160-迁移学习的更多相关文章

  1. 迁移学习-Transfer Learning

    迁移学习两种类型: ConvNet as fixed feature extractor:利用在大数据集(如ImageNet)上预训练过的ConvNet(如AlexNet,VGGNet),移除最后几层 ...

  2. 用tensorflow迁移学习猫狗分类

    笔者这几天在跟着莫烦学习TensorFlow,正好到迁移学习(至于什么是迁移学习,看这篇),莫烦老师做的是预测猫和老虎尺寸大小的学习.作为一个有为的学生,笔者当然不能再预测猫啊狗啊的大小啦,正好之前正 ...

  3. TensorFlow从1到2(九)迁移学习

    迁移学习基本概念 迁移学习是这两年比较火的一个话题,主要原因是在当前的机器学习中,样本数据的获取是成本最高的一块.而迁移学习可以有效的把原有的学习经验(对于模型就是模型本身及其训练好的权重值)带入到新 ...

  4. TensorFlow迁移学习的识别花试验

    最近学习了TensorFlow,发现一个模型叫vgg16,然后搭建环境跑了一下,觉得十分神奇,而且准确率十分的高.又上了一节选修课,关于人工智能,老师让做一个关于人工智能的试验,于是觉得vgg16很不 ...

  5. 第二十四节,TensorFlow下slim库函数的使用以及使用VGG网络进行预训练、迁移学习(附代码)

    在介绍这一节之前,需要你对slim模型库有一些基本了解,具体可以参考第二十二节,TensorFlow中的图片分类模型库slim的使用.数据集处理,这一节我们会详细介绍slim模型库下面的一些函数的使用 ...

  6. 『TensorFlow』迁移学习

    完全版见github:TransforLearning 零.迁移学习 将一个领域的已经成熟的知识应用到其他的场景中称为迁移学习.用神经网络的角度来表述,就是一层层网络中每个节点的权重从一个训练好的网络 ...

  7. 1 如何使用pb文件保存和恢复模型进行迁移学习(学习Tensorflow 实战google深度学习框架)

    学习过程是Tensorflow 实战google深度学习框架一书的第六章的迁移学习环节. 具体见我提出的问题:https://www.tensorflowers.cn/t/5314 参考https:/ ...

  8. Google Tensorflow 迁移学习 Inception-v3

    附上代码加数据地址 https://github.com/Liuyubao/transfer-learning ,欢迎参考. 一.Inception-V3模型 1.1 详细了解模型可参考以下论文: [ ...

  9. tensorflow实现迁移学习

    此例程出自<TensorFlow实战Google深度学习框架>6.5.2小节 卷积神经网络迁移学习. 数据集来自http://download.tensorflow.org/example ...

随机推荐

  1. 关于类视图选择继承APIView还是工具视图(ListAPIView、CreateAPIView等等)

    APIView使用方法,直接继承APIView,get或者post请求.方法很简单1.先获取到要操作的数据,然后把数据放到serializer中序列化或者反序列化,最后return返回值(记得.dat ...

  2. 使用lxml解析HTML代码

    做个参考,转自:https://blog.csdn.net/qq_42281053/article/details/80658018

  3. redis 安装使用 & SpringBoot Redis配置

    1.安装 https://www.cnblogs.com/dingguofeng/p/8709476.html https://www.runoob.com/redis/redis-keys.html ...

  4. easyui的学习总结

    大家都知道easy-ui,样式虽然不怎么骚气,但是使用,小表格,很的大家欢喜 大致总结如下 :属性分为CSS片段和JS片段.CSS类定义:1.div easyui-window 生成一个window窗 ...

  5. 并发编程-线程-死锁现象-GIL全局锁-线程池

    一堆锁 死锁现象 (重点) 死锁指的是某个资源被占用后,一直得不到释放,导致其他需要这个资源的线程进入阻塞状态. 产生死锁的情况 对同一把互斥锁加了多次 一个共享资源,要访问必须同时具备多把锁,但是这 ...

  6. Java中BIO和NIO

    同步/异步.阻塞/非阻塞概念 同步异步 同步和异步关注的是消息通信机制 (synchronous communication/ asynchronous communication) 同步:在发出一个 ...

  7. Mongodb 学习笔记(三) .net core SDK

    首先添加 Nuget包  MongoDB.Driver 创建一个Model. public class Student { public ObjectId _id { get; set; } publ ...

  8. 【转载】C#中List集合使用Last方法获取最后一个元素

    在C#的List集合操作过程中,如果要获取List集合中的最后一个元素对象,则一般会先通过获取到list集合的个数Count属性,然后再使用索引的方式获取到该集合的最后一个位置的元素信息.其实在Lis ...

  9. jmeter用什么查看结果报告

    JMeter查看测试结果的方法很多,最常用的几种是:察看结果树.聚合报告.图形报表.邮件观察仪等.

  10. UI5-技术篇-Hybrid App-2-Geolocation位置定位

    在SAP WEB IDE简单测试基于HTML5自带的定位功能,相关步骤如下: 1.VIEW代码 <mvc:View xmlns:core="sap.ui.core" xmln ...