Vasya and Shifts CodeForces - 832E (高斯消元)
大意: 给定$4n$个$m$位的五进制数, $q$个询问, 每个询问给出一个$m$位的五进制数$b$, 求有多少种选数方案可以使五进制异或和为$b$.
高斯消元入门题
每次询问相当于就是给定了$m$个式子组成的模$5$的方程组, 求解的个数
如果消元后询问某一位非零, 但是对应系数矩阵全零, 那么无解
否则解的个数是$5^{n-r}$
$q$组询问的话, 就增广$q$列, 同时解$q$个方程组即可.
#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <cstring>
#include <bitset>
#include <functional>
#include <random>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<',';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 510;
int n, m, q, A[N][2*N], in[N];
char s[N]; int main() {
REP(i,0,4) in[i]=i*i*i%5;
scanf("%d%d", &n, &m);
REP(i,1,n) {
scanf("%s",s+1);
REP(j,1,m) A[j][i]=s[j]-'a';
}
scanf("%d", &q);
REP(i,1,q) {
scanf("%s",s+1);
REP(j,1,m) A[j][i+n]=s[j]-'a';
}
int r = 0;
REP(i,1,n) {
int p = r;
while (!A[p][i]&&p<=m) ++p;
if (p>m) continue;
if (p!=r) REP(j,1,n+q) swap(A[p][j],A[r][j]);
REP(j,1,m) if (j!=r&&A[j][i]) {
int t = A[j][i]*in[A[r][i]]%5;
REP(k,i,n+q) A[j][k]=(A[j][k]-t*A[r][k]+25)%5;
}
++r;
}
REP(i,1,q) {
int ans = qpow(5,n-r);
REP(j,1,m) if (A[j][i+n]) {
int ok = 0;
REP(k,1,n) if (A[j][k]) ok = 1;
if (!ok) ans = 0;
}
printf("%d\n",ans);
}
}
Vasya and Shifts CodeForces - 832E (高斯消元)的更多相关文章
- Codeforces 1163E 高斯消元 + dfs
题意:给你一个集合,让你构造一个长度尽量长的排列,使得排列中任意相邻两个位置的数XOR后是集合中的数. 思路:我们考虑枚举i, 然后判断集合中所有小于1 << i的数是否可以构成一组异或空 ...
- Codeforces 832E Vasya and Shifts - 高斯消元
题目传送门 快速的传送门I 快速的传送门II 题目大意 (题意比较复杂,请自行阅读原题) 可以将原题的字母都看成它们的在字符表中的下标,这样问题就变成给定$n$个$m$维向量$\vec{a_{1}}, ...
- Codeforces Gym10008E Harmonious Matrices(高斯消元)
[题目链接] http://codeforces.com/gym/100008/ [题目大意] 给出 一个n*m的矩阵,要求用0和1填满,使得每个位置和周围四格相加为偶数,要求1的数目尽量多. [题解 ...
- Codeforces Round #114 (Div. 1) E. Wizards and Bets 高斯消元
E. Wizards and Bets 题目连接: http://www.codeforces.com/contest/167/problem/E Description In some countr ...
- CodeForces 24D Broken robot(期望+高斯消元)
CodeForces 24D Broken robot 大致题意:你有一个n行m列的矩形板,有一个机器人在开始在第i行第j列,它每一步会随机从可以选择的方案里任选一个(向下走一格,向左走一格,向右走一 ...
- Educational Codeforces Round 63 (Rated for Div. 2) E 带模高斯消元
https://codeforces.com/contest/1155/problem/E 题意 \(f(x)=a_0+a_1x+a_2x^2+...+a_kx^k,k \leq 10,0 \leq ...
- Codeforces 446D - DZY Loves Games(高斯消元+期望 DP+矩阵快速幂)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,%%% 首先考虑所有格子都是陷阱格的情况,那显然就是一个矩阵快速幂,具体来说,设 \(f_{i,j}\) 表示走了 \(i\) 步 ...
- Codeforces.24D.Broken robot(期望DP 高斯消元)
题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...
- Codeforces.472F.Design Tutorial: Change the Goal(构造 线性基 高斯消元)
题目链接 \(Description\) 给定两个长为\(n\)的数组\(x_i,y_i\).每次你可以选定\(i,j\),令\(x_i=x_i\ \mathbb{xor}\ x_j\)(\(i,j\ ...
随机推荐
- C语言-----野指针
问题所在 1.局部指针变量没有被初始化 2.使用已经释放过后的指针 3.指针所指向的变量在指针之前被销毁 4.结构体成员指针未初始化, 没有为结构体指针分配足够的内存 ,内存越界(考虑使用柔性数组)和 ...
- es6中class类的静态方法、实例方法、实例属性、(静态属性)
关于类有两个概念,1,类自身,:2,类的实例对象 总的来说:静态的是指向类自身,而不是指向实例对象,主要是归属不同,这是静态属性的核心. 难点1:静态方法的理解 class Foo { static ...
- mysql 显示表结构
例子 mysql> show columns from table1; +------------+------------------+------+-----+---------+----- ...
- mingw w64的下载地址
mingw w64的下载地址,官网下载看得太晕.直接记下下载链接. https://sourceforge.net/projects/mingw-w64/ i686纯32位版供32位win系统使用.x ...
- 2019_软工实践_Beta(5/5)
队名:955 组长博客:点这里! 作业博客:点这里! 组员情况 组员1(组长):庄锡荣 过去两天完成了哪些任务 文字/口头描述 部署新服务器 展示GitHub当日代码/文档签入记录 接下来的计划 准备 ...
- [代码质量] 代码质量管控 -- 复杂度检测 (JavaScript)
转载自: https://juejin.im/post/59bb8b546fb9a00a4247532e 背景 代码的复杂度是评估一个项目的重要标准之一.较低的复杂度既能减少项目的维护成本,又能避免一 ...
- cesium常用设置【转】
https://blog.csdn.net/D_Walker/article/details/82188514 1.加载线上cesium代码<link href="http://ces ...
- Oracle定时任务执行存储过程备份日志记录表
写在前面 需求 1.备份系统日志表T_S_LOG, 按照操作时间字段OPERATETIME, 将每天的日志增量备份到另一张表. 思路 1.创建一张数据结构完全相同的表T_S_LOG_BAK作为备份表 ...
- SQLServer replace函数
declare @name char(1000) --注意:char(10)为10位,要是位数小了会让数据出错 set @name='ssssfcfgghdghdfcccs' select repla ...
- [Java复习] Spring Cloud - Netflix
Spring Cloud Netflix常用组件 服务注册与发现:Eureka 服务负载均衡:Ribbon 服务声明式客户端:Feign 服务熔断:Hystrix 服务网关: Zuul Eureka: ...