sgu101-欧拉回路
101. Domino
time limit per test: 0.25 sec.
memory limit per test: 4096 KB
Dominoes – game played with small, rectangular blocks of wood or other material, each identified by a number of dots, or pips, on its face. The blocks usually are called bones, dominoes, or pieces and sometimes men, stones, or even cards.
The face of each piece is divided, by a line or ridge, into two squares, each of which is marked as would be a pair of dice...
The principle in nearly all modern dominoes games is to match one end of a piece to another that is identically or reciprocally numbered.
ENCYCLOPÆDIA BRITANNICA
Given a set of domino pieces where each side is marked with two digits from 0 to 6. Your task is to arrange pieces in a line such way, that they touch through equal marked sides. It is possible to rotate pieces changing
left and right side.
Input
The first line of the input contains a single integer N (1 ≤ N ≤ 100) representing the total number of pieces in the domino set. The following N lines describe pieces. Each piece is represented
on a separate line in a form of two digits from 0 to 6 separated by a space.
Output
Write “No solution” if it is impossible to arrange them described way. If it is possible, write any of way. Pieces must be written in left-to-right order. Every of N lines must contains number of current domino piece
and sign “+” or “-“ (first means that you not rotate that piece, and second if you rotate it).
Sample Input
5
1 2
2 4
2 4
6 4
2 1
Sample Output
2 -
5 +
1 +
3 +
4 -
题意是这种:给你一个数字N,告诉你有多少牌,接下来每一行分别代表一张牌,两个数字分别代表正反两面。能够交换数字。比方我是[1,2]。[3。2]那么我就能够先推倒[1,2],然后转下[3,2]变成[2。3]那么就能够推倒[2,3]
如题目sample,output第一行是2 -,那么我就先选第2个[2,4]变成[4,2],然后是5+,就是[2,1],依次下去就能够所有推倒了。当然有些组合是能够推倒有些是不能所有推倒的。
怎么reduce这个题呢?应该非常easy想到一笔画问题。真的是非常easy想到 = =,那么sample input 就转化成 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" height="130" alt="">
就是一个无向欧拉通路(跟回路差点儿相同。仅仅是回路要回到起点)问题
仅仅要奇数度的点的个数为0或者2就能够达成通路,假设是0,那么起点随意选,否则起点要选奇数度点。
所以我们要用DFS
void through(int start, vector<int>& s){
vector<int>e = maps[start];
for(int i = 0;i < e.size();i++){
if(Edges[e[i]].visited)
continue;
else{
Edges[e[i]].visited = true;
if(start == Edges[e[i]].v1){
through(Edges[e[i]].v2, s);
s.push_back(e[i]);
} else {
through(Edges[e[i]].v1, s);
s.push_back(e[i]);
}
}
}
return;
}最核心的代码在这里,在DFS里有个跟出栈差点儿相同的操作,在这个操作后,我们就把这条路径给加到结果里面去,当然结果里面是逆序的,我们要逆向输出
以下贴出所有代码
#include <iostream>
#include <stdlib.h>
#include <vector>
#include <map> using namespace std; int N = 0;
int occ[7] = {0};
int START = 0; struct Edge{
int v1,v2;
bool visited;
Edge(){};
Edge(int _v1, int _v2, bool _vis){
v1 = _v1;v2 = _v2;visited = _vis;
}
};
struct Edge Edges[110];
map< int , vector<int> >maps; /*
* 返回一个节点的全部边
*/
vector<int> getEdge(int n){
vector<int> set;
for(int i = 0;i < N;i++){
if(n == Edges[i].v1 || n == Edges[i].v2){
set.push_back(i);
}
}
return set;
} void res(int start,vector<int>& s){
for(int i = s.size()-1;i >= 0;i--){
int front = Edges[s[i]].v1;
int back = Edges[s[i]].v2;
if(start == front){
cout << s[i]+1 << " +" << endl;
start = back;
} else {
cout << s[i]+1 << " -" << endl;
start = front;
}
}
} void through(int start, vector<int>& s){
vector<int>e = maps[start];
for(int i = 0;i < e.size();i++){
if(Edges[e[i]].visited)
continue;
else{
Edges[e[i]].visited = true;
if(start == Edges[e[i]].v1){
through(Edges[e[i]].v2, s);
s.push_back(e[i]);
} else {
through(Edges[e[i]].v1, s);
s.push_back(e[i]);
}
}
}
return;
} int main()
{
int front,back;
cin >> N; int index = 0;
while(cin >> front && cin >> back)
{
Edges[index] = Edge(front,back,false);
index++;
occ[front]++;
occ[back]++;
} int odd_pot = 0, start = Edges[0].v1;
for(int i = 0;i < 7;i++){
if(occ[i] % 2 == 1){
odd_pot++;
start = i;
}
maps[i] = getEdge(i);
}
START = start;
if(odd_pot != 0 && odd_pot != 2){
cout << "No solution";
return 0;
} vector<int>results;
through(start,results);
if(results.size() < N)cout << "No solution";
else res(START,results); return 0;
}
sgu101-欧拉回路的更多相关文章
- SGU---101 无向图的欧拉回路
题目链接: https://cn.vjudge.net/problem/SGU-101 题目大意: 给定你n张骨牌,每张牌左右两端有一个数字,每张牌的左右两端数字可以颠倒,找出一种摆放骨牌的顺序,使得 ...
- ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)
//网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...
- [poj2337]求字典序最小欧拉回路
注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...
- ACM: FZU 2112 Tickets - 欧拉回路 - 并查集
FZU 2112 Tickets Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u P ...
- UVA 10054 the necklace 欧拉回路
有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...
- POJ 1637 混合图的欧拉回路判定
题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...
- codeforces 723E (欧拉回路)
Problem One-Way Reform 题目大意 给一张n个点,m条边的无向图,要求给每条边定一个方向,使得最多的点入度等于出度,要求输出方案. 解题分析 最多点的数量就是入度为偶数的点. 将入 ...
- UVa 12118 检查员的难题(dfs+欧拉回路)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 10054 (欧拉回路) The Necklace
题目:这里 题意:有一种由彩色珠子连接而成的项链,每个珠子两半由不同颜色(由1到50的数字表示颜色)组成,相邻的两个珠子在接触的地方颜色相同,现在有一些零碎的珠子,确认它是否能 复原成完整的项链. 把 ...
- poj2513Colored Sticks(无向图的欧拉回路)
/* 题意:将两端涂有颜色的木棒连在一起,并且连接处的颜色相同! 思路:将每一个单词看成一个节点,建立节点之间的无向图!判断是否是欧拉回路或者是欧拉路 并查集判通 + 奇度节点个数等于2或者0 */ ...
随机推荐
- 在C#中将金额转换成中文大写金额
具体代码如下: /// <summary> /// 金额转换成中文大写金额 /// </summary> /// <param name="LowerMoney ...
- 大数据技术之_16_Scala学习_09_函数式编程-高级
第十三章 函数式编程-高级13.1 偏函数(partial function)13.1.1 提出一个需求,引出思考13.1.2 解决方式-filter + map 返回新的集合13.1.3 解决方式- ...
- APP专项测试 | 内存及cpu
命令: adb shell dumpsys meminfo packagename 关注点: 1.Native/Dalvik 的 Heap 信息 具体在上面的第一行和第二行,它分别给出的是JNI层和 ...
- StringBuffer 清空
几种方法: 方法1: 1 2 3 4 StringBuffer my_StringBuffer = new StringBuffer(); my_StringBuffer.append('hellow ...
- hdu 1425 Happy 2004
题目链接 hdu 1425 Happy 2004 题解 题目大意: 求 \[\sum_{d|2004^{x}}d\ mod\ 29\] 记为\(s(2004^x)\) \(sum(2004^{x})= ...
- 程设刷题 | 程序设计实践II-2017(部分)
目录 1165-算术题 题目描述 代码实现 1184-Tourist 1 题目描述 代码实现 1186-Tourist 2 题目描述 代码实现 1224-LOVE 题目描述 代码实现 1256-湘潭大 ...
- 在cnBlogs上使用MarsEdit发blog
工欲善其事,必先利其器.既然决定了要经常使用blog,就要给自己一个好环境! 1.Mac下优秀的发博客工具--MarsEdit 网上有许多有用的文章教你如何使用它. 比如 http://fduo.or ...
- 【spring boot】15.spring boot项目 采用Druid数据库连接池,并启用druid监控功能
在http://www.cnblogs.com/sxdcgaq8080/p/9039442.html的基础上,来看看spring boot项目中采用Druid连接池. GitHub地址:示例代码 == ...
- git reset revert区别
git revert HEAD~1 撤销倒数第二次提交,并将这次操作作为一个新提交添加到log里,之前的提交历史不变,是撤销某次提交 git reset,直接回退到指定版本 git reset --s ...
- JavaScript入门:006—JS函数的定义
JS函数的声明. 声明函数的格式例如以下: function 函数名(參数列表){ //函数语句: return 返回值; } 来看详细的函数声明.1.普通函数 <script type=&qu ...