ACM学习历程—HDU1041 Computer Transformation(递推 && 大数)
Description
A sequence consisting of one digit, the number 1 is initially written into a computer. At each successive time step, the computer simultaneously tranforms each digit 0 into the sequence 1 0 and each digit 1 into the sequence 0 1. So, after the first time step, the sequence 0 1 is obtained; after the second, the sequence 1 0 0 1, after the third, the sequence 0 1 1 0 1 0 0 1 and so on.
How many pairs of consequitive zeroes will appear in the sequence after n steps?
Input
Every input line contains one natural number n (0 < n ≤1000).
Output
For each input n print the number of consecutive zeroes pairs that will appear in the sequence after n steps.
Sample Input
2
3
Sample Output
1
1
题目大意就是有0-> 10, 1->01这两种变换,起始状态是1,让求某次变换后连续两个0的个数,此处有且仅两个0连续。
首先枚举前几项的话
0:1
1:01
2:1001
3:01101001
4:1001011001101001
5:01101001100101101001011001101001
……
发现两个个规律,
1:
所有项前一半和后一半互反,此外,偶数项对称。
想来也是,只要满足某个前一项前一半和后一半互反,0->10,1->01后,自然造成后一项同样互反的形式。
同样的前一个偶数项的对称会导致后面奇数项的前一半和后一半都对称,自然导致后一个偶数项对称。
此处严谨证明应由数学归纳法。
2:
后一项等于前一项取反拼上前一项。
发现奇数项由于前后互反,在交接处会形成01,那么下一项在对称情况下,交界处必形成1001。所以偶数项的0对会多生成一个。
有了这些就知道了两项间的关系。
于是由2得:
zero[i] = zero[i-1]+one[i-1]+(i-1)%2;
one[i] = zero[i-1]+one[i-1];
由于递推式看起来增长速度就和费波拉契有的一比,估计需要大数。实测确实需要。
代码:
import java.math.BigInteger;
import java.util.Scanner; public class Main
{
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
BigInteger one[] = new BigInteger[];
BigInteger zero[] = new BigInteger[];
one[] = new BigInteger("");
one[] = new BigInteger("");
zero[] = new BigInteger("");
zero[] = new BigInteger("");
for (int i = ; i <= ; ++i)
{
zero[i] = zero[i-].add(one[i-]).add(new BigInteger(Integer.toString((i-)%)));
one[i] = zero[i-].add(one[i-]);
}
int n;
while (input.hasNext())
{
n = input.nextInt();
System.out.println(zero[n]);
}
}
}
ACM学习历程—HDU1041 Computer Transformation(递推 && 大数)的更多相关文章
- ACM学习历程—HDU5396 Expression(递推 && 计数)
Problem Description Teacher Mai has n numbers a1,a2,⋯,an and n−1 operators("+", "-&qu ...
- ACM学习历程—UESTC 1217 The Battle of Chibi(递推 && 树状数组)(2015CCPC C)
题目链接:http://acm.uestc.edu.cn/#/problem/show/1217 题目大意就是求一个序列里面长度为m的递增子序列的个数. 首先可以列出一个递推式p(len, i) = ...
- ACM学习历程——ZOJ 3822 Domination (2014牡丹江区域赛 D题)(概率,数学递推)
Description Edward is the headmaster of Marjar University. He is enthusiastic about chess and often ...
- ACM学习历程—HDU1028 Ignatius and the Princess III(递推 || 母函数)
Description "Well, it seems the first problem is too easy. I will let you know how foolish you ...
- ACM学习历程—HDU 5326 Work(树形递推)
Problem Description It’s an interesting experience to move from ICPC to work, end my college life an ...
- ACM学习历程—SNNUOJ 1116 A Simple Problem(递推 && 逆元 && 组合数学 && 快速幂)(2015陕西省大学生程序设计竞赛K题)
Description Assuming a finite – radius “ball” which is on an N dimension is cut with a “knife” of N- ...
- ACM学习历程—NPU 2015年陕西省程序设计竞赛网络预赛(正式赛)F题 和谐的比赛(递推)
Description 今天西工大举办了一场比赛总共有m+n人,但是有m人比较懒没带电脑,另外的n个人带了电脑.不幸的是,今天机房的电脑全坏了只能用带的电脑,一台电脑最多两人公用,确保n>=m. ...
- 完成了C++作业,本博客现在开始全面记录acm学习历程,真正的acm之路,现在开始
以下以目前遇到题目开始记录,按发布时间排序 ACM之递推递归 ACM之数学题 拓扑排序 ACM之最短路径做题笔记与记录 STL学习笔记不(定期更新) 八皇后问题解题报告
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
随机推荐
- mybatis注解实现CURD
我们来看下面这段代码: /** * The user Mapper interface. * * @author Wangzun * * @version 1.0 * * */ @CacheNames ...
- group_concat函数导致的主从同步异常
group_concat函数导致的主从同步异常的问题总结 今天在处理一个group_concat函数导致的主从异常的问题,排查过程比较简单,不过第一次遇到这个问题记录一下排查的思路,后面如果再遇到其他 ...
- 洛谷P1073 最优贸易==codevs1173 最优贸易
P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...
- 九度OJ 1260:珍珠项链 (字符串处理、DP)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:101 解决:27 题目描述: 假设有一条珍珠项链,有很多珍珠,r代表红色, b代表蓝色, w代表白色. 假设你在某一处剪开之后,你会沿着顺时 ...
- Idea 使用的技巧和设置
1.自动提示时候,忽绿大小写, setting---->sensitive 2:IntelliJ IDEA报错class is never used 图中的unused declaration选 ...
- Django 之Form组件
Django之From组件 扩展:Django 之 ModelForm组件 Form组件功能 Django的Form主要具有一下几大功能 生成HTML标签 验证用户数据(显示错误信息) HTML Fo ...
- CentOS iSCSI服务器搭建------LUN篇
先上服务器信息(你懂得) [root@node ~]# cat /etc/redhat-release CentOS release 6.6 (Final) [root@node ~]# uname ...
- Git——基本操作(三)
一.安装和配置 1.Git安装 yum install git -y 安装完Git就可以对其做一些配置: Git有一个工具被称为git config,它允许你获得和设置配置变量: 这些变量可以控制Gi ...
- LeetCode:删除排序数组中的重复项||【80】
LeetCode:删除排序数组中的重复项||[80] 题目描述 给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素最多出现两次,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原 ...
- HTML相对路径与绝对路径
在网页制作的过程中,少不了跟路径打交道,比如,包含一个文件,插入一个图片等,与路径都有关系,如果使用了错误的文件路径,就会导致引用失效(无法浏览链接文件,或无法显示插入的图片等).初学者可能会感到困惑 ...