题目大意:

给定一个长为n的字符串,每个下标有一个权\(w_i\),定义下标\(i,j\)是r相似的仅当\(r \leq LCP(suf(i),suf(j))\)且这个相似的权为\(w_i,w_j\)

分别求出所有满足1 .. r相似的下标对数,及最大权.

题解:

我们发现这道题可以在后缀树上瞎搞

我们知道:\(LCP(suf(i),suf(j)) = len(lca(i,j))\)

所以我们可以对后缀树上的所有节点dp一下,求出每个点的子树包含的点对数

同时dp出子树中存在的权的最大值,次大值,最小值,次小值

然后累加答案即可.

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch = getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 1000010;
struct Edge{
int to,next;
}G[maxn];
int head[maxn],cnt;
void add(int u,int v){
G[++cnt].to = v;
G[cnt].next = head[u];
head[u] = cnt;
}
struct Node{
int nx[26];
int len,fa;
}T[maxn];
int last,nodecnt = 0,n;
int a[maxn],siz[maxn],mx[maxn],cmx[maxn];
int mn[maxn],cmn[maxn];
inline void insert(char cha,int i){
int c = cha - 'a',cur = ++ nodecnt,p;
T[cur].len = T[last].len + 1;
for(p = last;p != -1 && !T[p].nx[c];p = T[p].fa) T[p].nx[c] = cur;
if(p == -1) T[cur].fa = 0;
else{
int q = T[p].nx[c];
if(T[q].len == T[p].len + 1) T[cur].fa = q;
else{
int co = ++ nodecnt;T[co] = T[q];T[co].len = T[p].len + 1;
for(;p != -1 && T[p].nx[c] == q;p = T[p].fa) T[p].nx[c] = co;
T[cur].fa = T[q].fa = co;
}
}
siz[last = cur]++;
mx[cur] = mn[cur] = a[i];
}
ll num[maxn];
char s[maxn];
ll ans1[maxn],ans2[maxn];
inline void update(int &x,int &y,int z){
if(z >= x) y = x,x = z;
else if(z >= y) y = z;
}
inline void downpdate(int &x,int &y,int z){
if(z <= x) y = x,x = z;
else if(z <= y) y = z;
}
#define v G[i].to
void dfs(int u,int fa){
for(int i = head[u];i;i = G[i].next){
if(v == fa) continue;
dfs(v,u);
num[u] += 1LL*siz[u]*siz[v];
siz[u] += siz[v];
update(mx[u],cmx[u],mx[v]);update(mx[u],cmx[u],cmx[v]);
downpdate(mn[u],cmn[u],mn[v]);
downpdate(mn[u],cmn[u],cmn[v]);
}
if(mx[u] != mx[maxn-1] && cmx[u] != cmx[maxn-1]){
ans2[T[u].len] = max(ans2[T[u].len],max(1LL*mx[u]*cmx[u],1LL*mn[u]*cmn[u]));
}
ans1[T[u].len] += num[u];
}
#undef v
int main(){
memset(mx,-0x3f,sizeof mx);memset(cmx,-0x3f,sizeof cmx);
memset(mn,0x3f,sizeof mn);memset(cmn,0x3f,sizeof cmn);
memset(ans2,-0x3f,sizeof ans2);
T[last = nodecnt = 0].fa = -1;
read(n);scanf("%s",s);
for(int i=0;i<n;++i) read(a[i]);
reverse(s,s+n);reverse(a,a+n);
for(int i=0;i<n;++i) insert(s[i],i);
for(int i=1;i<=nodecnt;++i) add(T[i].fa,i);
dfs(0,0);
for(int i=n-2;i>=0;--i){
ans1[i] += ans1[i+1];
ans2[i] = max(ans2[i],ans2[i+1]);
}
for(int i=0;i<n;++i){
if(ans2[i] == ans2[maxn-1]) ans2[i] = 0;
printf("%lld %lld\n",ans1[i],ans2[i]);
}
getchar();getchar();
return 0;
}

bzoj 4199: [Noi2015]品酒大会 后缀树的更多相关文章

  1. uoj 131/bzoj 4199 [NOI2015]品酒大会 后缀树+树d

    题目大意 见uoj131 分析 题目的提示还是很明显的 \(r\)相似就就代表了\(0...r-1\)相似 建出后缀树我们能dfs算出答案 再后缀和更新一下即可 注意 细节挺多的,但数据很良心 不然我 ...

  2. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  3. BZOJ.4199.[NOI2015]品酒大会(后缀自动机 树形DP)

    BZOJ 洛谷 后缀数组做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 只考虑求极长相同子串,即所有后缀之间的LCP. 而后缀的LCP在后缀树的LCA处.同差异这道题,在每个点处 ...

  4. BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)

    BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...

  5. BZOJ 4199: [Noi2015]品酒大会( 后缀数组 + 并查集 )

    求出后缀数组后, 对height排序, 从大到小来处理(r相似必定是0~r-1相似), 并查集维护. 复杂度O(NlogN + Nalpha(N)) ------------------------- ...

  6. BZOJ 4199: [Noi2015]品酒大会 后缀自动机_逆序更新

    一道裸题,可以考虑自底向上去更新方案数与最大值. 没啥难的 细节........ Code: #include <cstdio> #include <algorithm> #i ...

  7. bzoj 4199: [Noi2015]品酒大会

    Description 一年一度的"幻影阁夏日品酒大会"隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发"首席品酒家"和"首席猎手&quo ...

  8. 【刷题】BZOJ 4199 [Noi2015]品酒大会

    Description 一年一度的"幻影阁夏日品酒大会"隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发"首席品酒家"和"首席猎手&quo ...

  9. [BZOJ]4199: [Noi2015]品酒大会(后缀数组+笛卡尔树)

    Time Limit: 10 Sec  Memory Limit: 512 MB Description Input Output Sample Input 10 ponoiiipoi 2 1 4 7 ...

随机推荐

  1. Jmeter+Ant+Jenkins接口自动化测试框架搭建

    前言 软件开发的V模型大家都不陌生,其中测试阶段分为单元测试→功能测试→系统测试→验收测试.其中单元测试一般由开发同学们自己完成,大部分测试具体实施(这里不包括用例设计)是从单体功能测试开始着手的. ...

  2. 九度OJ 1187:最小年龄的3个职工 (排序)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2291 解决:936 题目描述: 职工有职工号,姓名,年龄.输入n个职工的信息,找出3个年龄最小的职工打印出来. 输入: 输入第一行包括1个 ...

  3. Bootstrap学习-菜单-按钮-导航

    1.下拉菜单(基本用法) 在使用Bootstrap框架的下拉菜单时,必须调用Bootstrap框架提供的bootstrap.js文件.当然,如果你使用的是未编译版本,在js文件夹下你能找到一个名为“d ...

  4. python中TCP和UDP区别

    TCP(Transmission Control Protocol)可靠的.面向连接的协议(eg:打电话).传输效率低全双工通信(发送缓存&接收缓存).面向字节流.使用TCP的应用:Web浏览 ...

  5. JQuery日记 5.11 Sizzle选择器(五)

    //设置当前document和document相应的变量和方法 setDocument = Sizzle.setDocument = function( node ) { var hasCompare ...

  6. 如何禁止eclipse对js文件的校验(building validate)

    在项目(project)上点击右键,依次选择1.Select Properties -> JavaScript -> Include Path2.Select Source tab. ( ...

  7. mathjax

    MathJax.Hub.Typeset() method. This will cause the preprocessors (if any were loaded) to run over the ...

  8. curl 监控web

    [root@rhel6 ~]# curl -I -s -w "%{http_code}\n" -o /dev/null http://127.0.0.1 [root@rhel6 ~ ...

  9. 在macOS上使用***

    写在教程之前[转] 本教程是通用的***在macOS上的使用教程.同时作为FzVPN的设备教程补充之一,适用于macOS. 若您在使用FzVPN,请在阅读前先仔细阅读FzVPN的使用帮助:>传送 ...

  10. nginx源码中upstream的主要流程

    upstream 即上游的意思,是一个想对到概念,从客户端到中间的网络链路到服务器到链路中,可以将越接近客户到设备越理解成下游,相反到为上游,所以如果只有一个upstream,可以将其为理解成转发客户 ...