T1

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
const int N=;
int n,m,k,p;
int to[N],nex[N];
int a[N][N];
int main()
{
freopen("rotate.in","r",stdin);
freopen("rotate.out","w",stdout);
scanf("%d%d%d",&n,&p,&k);
for(int j=;j<=n;j++) to[j]=j;
for(int i=;i<=p;i++)
{
scanf("%d",&m);a[i][]=m;
for(int j=;j<=m;j++) scanf("%d",&a[i][j]);
}
for(int i=p;i>=;i--)
{
memset(nex,,sizeof nex);m=a[i][]; for(int j=;j<=m;j++) nex[a[i][j-]]=a[i][j];
nex[a[i][m]]=a[i][]; for(int j=;j<=n;j++)
if(nex[to[j]]) to[j]=nex[to[j]];
}
for(int j=;j<=n;j++)
printf("%d ",to[j]);
return ;
}

first 100

置换,没学过的话模拟就行。考察理解题意了。

正着做:置换的性质。(不知道也能做)

T2

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
const int N=1e4+;
int n,a,b,c,d;
int q[N];
long long ans;
int main()
{
freopen("range.in","r",stdin);
freopen("range.out","w",stdout);
scanf("%d%d%d%d%d",&n,&a,&b,&c,&d); for(int i=;i<=n;i++) scanf("%d",&q[i]); for(int i=,j;i<=n;i++)
{
int ans1,ans2;
ans1=ans2=q[i];
if(ans1<a||ans2>d) continue;
j=i;
for(j;j<=n;j++)
{
ans1&=q[j];ans2|=q[j];
if(ans1<a||ans2>d) break;
if(ans1<=b&&ans2>=c) ans++;
}
}
cout<<ans<<endl;
return ;
}

first 60

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cmath>
#include<ctime>
using namespace std;
typedef long long LL;
const int N=1e5+;
const LL P=1e9+;
LL ans;
int s[N],sta[N][],sto[N][];
int worka(int l,int r)
{
int L=r-l+;
int t=log2(L);
return sta[l][t]&sta[r-(<<t)+][t];
}
int worko(int l,int r)
{
int L=r-l+;
int t=log2(L);
return sto[l][t]|sto[r-(<<t)+][t];
}
int n,a,b,c,d;
int main()
{
freopen("range.in","r",stdin);
freopen("range-me.out","w",stdout);
scanf("%d%d%d%d%d",&n,&a,&b,&c,&d);
for(int i=;i<=n;i++)
{
scanf("%d",&s[i]);
sta[i][]=sto[i][]=s[i];
} //预处理倍增,下一步能O(1)查询区间值
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
if(i+(<<j)- <=n )
{
sta[i][j]=sta[i][j-]&sta[i+(<<j)][j-];
sto[i][j]=sto[i][j-]|sto[i+(<<j)][j-];
}
//查找区间(具有单调性)
for(int i=;i<=n;i++)
{
int andans,orans;
// andans=orans=s[i];
int j=i;
while(j<=n)
{
int L=j,R=n+,mid;
andans=worka(i,j);
orans=worko(i,j);
while(R-L>)
{
mid=(L+R)>>;
if(worka(i,mid)==andans&&worko(i,mid)==orans)
L=mid;
else R=mid;
}
if(andans>=a&&andans<=b&& orans>=c&&orans<=d)
ans+=L-j+;
j=L;
} }
cout<<ans%P;
}

二分+st优化

先固定左端典,向右搜,查找区间个数。

怎么优化,二分 +倍增。

本来我想’与‘和’或‘是不满足 前缀差等于区间值的性质的。

其实我的想法太狭隘了,仔细想想:无论是’与‘还是’或‘ 都满足两段区间O(1)合成更大区间的性质。

比如f[1,6] & f[3,9],  可以看成f[1,3] & f[3,6]&f[6,9] &f[3,6] 一个数和本身的’‘与’还是本身无影响。

然后就能通过二分把n^n变成nlogn,

T3

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
const int N=;
const int P=1e9+;
int n,k;
int h[N],nex[N*],to[N*],cnt;
int w[N],sum[N],tot[N];//子树节点数,根到这的和
int x,y;
void add()
{
scanf("%d%d",&x,&y);
to[++cnt]=y,nex[cnt]=h[x],h[x]=cnt;
to[++cnt]=x,nex[cnt]=h[y],h[y]=cnt;
}
int vis[N];int ans;
void dfs(int Tot,int Sum,int last)
{
if(Tot==k)
{
int ss=Sum;
for(int i=;i<=n;i++)
if(vis[i])
for(int j=h[i];j;j=nex[j])
if(!vis[to[j]]) Sum++;
Sum=n--Sum;
ans=(1LL*ans+1LL*(<<Sum)%P)%P; Sum=ss;
}
if(Tot>k) return ;
for(int i=last;i<=n;i++)
if(vis[i])
{
int is=;
for(int j=h[i];j;j=nex[j])
if(!vis[to[j]]) {
vis[to[j]]=;
dfs(Tot+w[to[j]],Sum+,i);
vis[to[j]]=;
is=;
}
}
}
int main()
{
freopen("fruit.in","r",stdin);
freopen("fruit.out","w",stdout);
scanf("%d%d",&n,&k);
int is=;
for(int i=;i<=n;i++)
{
scanf("%d",&w[i]);
if(!w[i]) is=;
}
for(int i=;i<n;i++) add(); vis[]=;
dfs(w[],,);
if(!is) ans--;
cout<<ans;
return ;
}

0分

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long LL;
const LL P= 1e9+;
const int N=;
int n,k;
int a[N];
int h[N],nex[N*],to[N*],cnt;
LL f[N][N];
int x,y;
void add()
{
scanf("%d%d",&x,&y);
to[++cnt]=y,nex[cnt]=h[x],h[x]=cnt;
to[++cnt]=x,nex[cnt]=h[y],h[y]=cnt;
}
int dfs(int x,int fa)
{
int sum=,tmp;
for(int i=h[x];i;i=nex[i])
{
if(to[i]==fa) continue;
for(int j=;j<=n-a[to[i]];j++)
f[to[i]][j+a[to[i]]]=f[x][j];
tmp=dfs(to[i],x);
for(int j=;j<=n;j++)
f[x][j]=(f[x][j]*(<<(tmp-))+f[to[i]][j])%P;
sum+=tmp;
}
return sum;
}
int main()
{
freopen("d.in","r",stdin);
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++) add(); f[][a[]]=;
dfs(,);
printf("%lld",(f[][k]));
}

树上dp

说到T3我就不得不吐槽一下,我投入了整套题考试总时间中超过一半的时间,结果0分。遗憾啊。

搜索 搜重了,不知道怎么去重。

正解是个背包(我没看出来。。。),f[i][j]表示在i节点及其子树中拿j个果子的方案数,。

转移的话先遍历子节点,再根据已有信息更新其他字节点,和其父节点。

  dp[x][j] = ((1<<(tmp-1) * dp[x][j] % mod + dp[son][j])% mod

(除了直接相连的边必须断掉之外,其他边怎样都行,2^n 种状态。

Day5下的更多相关文章

  1. python基础六

    模块 1.定义: 模块:用来从逻辑上组织python代码(变量,函数,类,逻辑:实现一个功能),本质就是.py结尾的python文件(文件名:test.py,对应的模块名:test) 包:用来从逻辑上 ...

  2. 【python自动化第五篇:python入门进阶】

    今天内容: 模块的定义 导入方法 import的本质 导入优化 模块分类 模块介绍 一.模块定义: 用来在逻辑上组织python代码(变量,函数,逻辑,类):本质就是为了实现一个功能(就是以.py结尾 ...

  3. C++程序结构---1

    C++ 基础教程Beta 版 原作:Juan Soulié 翻译:Jing Xu (aqua) 英文原版 本教程根据Juan Soulie的英文版C++教程翻译并改编. 本版为最新校对版,尚未定稿.如 ...

  4. Kakfa揭秘 Day5 SocketServer下的NIO

    Kakfa揭秘 Day5 SocketServer下的NIO 整个Kafka底层都是基于NIO来进行开发的,这种消息机制可以达到弱耦合的效果,同时在磁盘有很多数据时,会非常的高效,在gc方面有非常大的 ...

  5. Python学习记录day5

    title: Python学习记录day5 tags: python author: Chinge Yang date: 2016-11-26 --- 1.多层装饰器 多层装饰器的原理是,装饰器装饰函 ...

  6. python笔记 - day5

    python笔记 - day5 参考: http://www.cnblogs.com/wupeiqi/articles/5484747.html http://www.cnblogs.com/alex ...

  7. python_way ,day5 模块,模块3 ,双层装饰器,字符串格式化,生成器,递归,模块倒入,第三方模块倒入,序列化反序列化,日志处理

    python_way.day5 1.模块3 time,datetime, json,pickle 2.双层装饰器 3.字符串格式化 4.生成器 5.递归 6.模块倒入 7.第三方模块倒入 8.序列化反 ...

  8. Catalyst揭秘 Day5 optimizer解析

    Catalyst揭秘 Day5 optimizer解析 Optimizer是目前为止中catalyst中最重要的部分.主要作用是把analyzed logicalPlan变成optimized Log ...

  9. Spark Streaming揭秘 Day5 初步贯通源码

    Spark Streaming揭秘 Day5 初步贯通源码 引子 今天,让我们从Spark Streaming最重要的三个环节出发,让我们通过走读,逐步贯通源码,还记得Day1提到的三个谜团么,让我们 ...

随机推荐

  1. javascript table排序之jquery.tablesorter.js

    table排序 jquery.tablesorter.js 一.Demo下载地址: 1.tablesorter.js下载地址: http://download.csdn.net/detail/zhan ...

  2. python web框架之Tornado的简单使用

    python web框架有很多,比如常用的有django,flask等.今天主要介绍Tornado ,Tornado是一个用Python写的相对简单的.不设障碍的Web服务器架构,用以处理上万的同时的 ...

  3. Java Web之数据库连接池

    数据库连接池 一.数据库连接池 1. 数据库连接池就是存放数据库连接(Connection)的集合 2. 我们获取一个数据库连接是一个相对很麻烦的过程,如果我们获取一个数据库连接,使用一次以后就给它关 ...

  4. Python 之 装饰器

    装饰器 中的“器”代指函数 所以装饰器本质是函数,用来装饰其它函数.例如:为其它函数添加其他功能 实现装饰器需要的知识:  高阶函数+嵌套函数 == 装饰器 1.函数就是“变量” 函数就是“变量”说的 ...

  5. the swap trick用于锐减过剩容量

    1.由于vector的复制构造函数只为被复制的vector分配它所需要的空间,故可以用如下的方式来削减vector v中过剩的容量:vector<int>(v).swap(v) 2.the ...

  6. CF431C k-Tree dp

    Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired ...

  7. ZOJ3068(01分数规划)

    本是POJ2976,喜闻乐见的01规划入门题.POJ日常假死,到ZOJ测. 二分答案. 试了试数据好像没问题,\(a_i\)总是小于\(b_i\)且最终预答案l都小于1.然而为什么我把r设成1e10往 ...

  8. hdu2795 Billboard(线段树)

    题意:h*w的木板,放进一些1*L的物品,求每次放空间能容纳且最上边的位子思路:每次找到最大值的位子,然后减去L线段树功能:query:区间求最大值的位子(直接把update的操作在query里做了) ...

  9. poj 3977 子集

    题目 题意:在一个集合中找到一个非空子集使得这个子集元素和的绝对值尽量小,和绝对值相同时保证元素个数尽量小 分析:1.二分枚举的思想,先分成两个集合: 2.枚举其中一个集合中所有的子集并且存到数组中, ...

  10. day17 isinstance type issubclass 反射

    1. issubclass,type,isinstance 1.issubclass 判断xxx是否yyy的子类 例: class Foo: pass class Bar(Foo): pass cla ...